1. 基础理论与经典教材
-
《Deep Learning》 (Ian Goodfellow, Yoshua Bengio, Aaron Courville)
-
深度学习领域的“圣经”,系统讲解CNN在内的深度学习理论,数学推导严谨,适合打基础。
-
中文版:《深度学习》
-
-
《Neural Networks and Deep Learning》 (Michael Nielsen)
-
免费在线书籍,图文并茂解释CNN基本原理,适合入门。
-
网址:http://neuralnetworksanddeeplearning.com
-
-
《Deep Learning with Python》 (François Chollet)
-
Keras框架作者撰写,第5章专门讲解CNN,适合快速实践。
-
中文版:《Python深度学习》
-
2. CNN专项与计算机视觉
-
《Computer Vision: Algorithms and Applications》 (Richard Szeliski)
-
计算机视觉经典教材,涵盖CNN在视觉任务中的应用(如目标检测、图像分割)。
-
中文版:《计算机视觉:算法与应用》
-
-
《Learning OpenCV 4 Computer Vision with Python 3》 (Joseph Howse等)
-
结合OpenCV实践CNN在视觉任务中的应用。
-
-
《Convolutional Neural Networks for Visual Recognition》 (Stanford CS231n课程讲义)
-
斯坦福经典课程CS231n的配套笔记,深入浅出讲解CNN架构与优化。
-
在线资源:CS231n官网
-
3. 实战与框架应用
-
《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow》 (Aurélien Géron)
-
第14章详解CNN实战,适合通过代码学习(TensorFlow/Keras)。
-
中文版:《Scikit-Learn与TensorFlow机器学习实用指南》
-
-
《PyTorch深度学习实战》 (Eli Stevens等)
-
使用PyTorch实现CNN模型,案例丰富。
-
4. 前沿与扩展
-
《Deep Learning for Computer Vision with Python》 (Adrian Rosebrock)
-
三卷本,涵盖从基础到高级的CNN应用(如医疗影像、GANs)。
-
适合结合OpenCV和Keras的开发者。
-
-
《Dive into Deep Learning》 (Aston Zhang等)
-
交互式学习(代码基于PyTorch/TensorFlow),CNN部分清晰易懂。
-
中文版:《动手学深度学习》
-
在线资源:https://d2l.ai
-
5. 论文与进阶研究
-
《Computer Vision: Models, Learning, and Inference》 (Simon J.D. Prince)
-
从概率建模角度分析CNN等视觉模型。
-
-
经典论文(必读):
-
AlexNet (2012), VGGNet (2014), ResNet (2015), Transformer-based Vision Models (ViT, 2020)
-
推荐阅读arXiv或会议论文(CVPR/ICCV/ECCV)。
-
选择建议:
-
入门:先看《Deep Learning with Python》或CS231n(贺完结!CS231n官方笔记授权翻译总集篇发布 - 知乎)讲义。
-
理论:精读《Deep Learning》第9章(CNN专项)。
-
实战:选择PyTorch或TensorFlow对应书籍,配合Kaggle竞赛练习。
-
视觉方向:结合《Computer Vision: Algorithms and Applications》和OpenCV实践。