CNN参考书籍

1. 基础理论与经典教材

2. CNN专项与计算机视觉

  • 《Computer Vision: Algorithms and Applications》 (Richard Szeliski)

    • 计算机视觉经典教材,涵盖CNN在视觉任务中的应用(如目标检测、图像分割)。

    • 中文版:《计算机视觉:算法与应用》

  • 《Learning OpenCV 4 Computer Vision with Python 3》 (Joseph Howse等)

    • 结合OpenCV实践CNN在视觉任务中的应用。

  • 《Convolutional Neural Networks for Visual Recognition》 (Stanford CS231n课程讲义)

    • 斯坦福经典课程CS231n的配套笔记,深入浅出讲解CNN架构与优化。

    • 在线资源:CS231n官网


3. 实战与框架应用

  • 《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow》 (Aurélien Géron)

    • 第14章详解CNN实战,适合通过代码学习(TensorFlow/Keras)。

    • 中文版:《Scikit-Learn与TensorFlow机器学习实用指南》

  • 《PyTorch深度学习实战》 (Eli Stevens等)

    • 使用PyTorch实现CNN模型,案例丰富。


4. 前沿与扩展

  • 《Deep Learning for Computer Vision with Python》 (Adrian Rosebrock)

    • 三卷本,涵盖从基础到高级的CNN应用(如医疗影像、GANs)。

    • 适合结合OpenCV和Keras的开发者。

  • 《Dive into Deep Learning》 (Aston Zhang等)


5. 论文与进阶研究

  • 《Computer Vision: Models, Learning, and Inference》 (Simon J.D. Prince)

    • 从概率建模角度分析CNN等视觉模型。

  • 经典论文(必读):

    • AlexNet (2012), VGGNet (2014), ResNet (2015), Transformer-based Vision Models (ViT, 2020)

    • 推荐阅读arXiv或会议论文(CVPR/ICCV/ECCV)。


选择建议

  • 入门:先看《Deep Learning with Python》或CS231n(贺完结!CS231n官方笔记授权翻译总集篇发布 - 知乎)讲义。

  • 理论:精读《Deep Learning》第9章(CNN专项)。

  • 实战:选择PyTorch或TensorFlow对应书籍,配合Kaggle竞赛练习。

  • 视觉方向:结合《Computer Vision: Algorithms and Applications》和OpenCV实践。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值