【无标题】

本文介绍了一种使用Hadoop MapReduce实现的算法,通过解析用户好友列表,找出并排序朋友之间的共同好友。Friend1Mapper负责拆分输入数据,Friend1Reducer则进行好友匹配并输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

shjhd1jp1

import com._51doit.mr.join.Join;
import com._51doit.mr.line.LineDemo;
import com._51doit.pojo.JoinBean;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.apache.zookeeper.txn.Txn;
 
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
 

public class Friend1 {
         // Mapper后面的括号中跟的是数据类型。
        //前两个数据类型是读取数据时的格式,也就是<LongWritable,Text>
	    //后两个数据类型输出的格式,也就是map阶段得到的键值对<key,value>的对应的数据类型。
    static class Friend1Mapper extends Mapper<LongWritable , Text , Text , Text>{
        Text k = new Text() ;
        Text v = new Text() ;
        @Override

//key和value前面的数据类型,就是上一句代码Mapper后面<>里面的前两个数据类型
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String line = value.toString();//获取Mapper端的输入值 
            String[] split = line.split(":");//以冒号拆分行文本数据,冒号左边是用户,右边是好友
            String id = split[0];//获取输入值中的用户名称
            //将冒号右边的字符串以逗号拆分,放入数组
            String[] fs = split[1].split(",");//获取输入值中的好友列表
            v.set(id);
            for (String f : fs) {
                k.set(f);
                context.write(k,v);
            }
        }
    }
 
    static class Friend1Reducer extends Reducer<Text , Text ,Text,Text>{
        @Override
        protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
            List<String> list =  new ArrayList<String>() ;
            for (Text value : values) { // B C D F G H I K O
                String f = value.toString();
                list.add(f) ;
            }
            // 排序
            Collections.sort(list);
            for(int i=0 ; i < list.size()-1;i++){  //  0
                for(int j=i+1 ; j<list.size();j++){ // 1   2  3  4  5  6
                    String pre = list.get(i); // B   C
                    String post = list.get(j);//  D F G H I K O
                    context.write(new Text(pre+"和"+post+"共同好友是:"),key);// key ==F
                }
            }
        }
    }
 
    public static void main(String[] args) throws Exception {
        Logger.getLogger("org").setLevel(Level.ERROR);
        Configuration conf = new Configuration();
        // 参数2  job的名字
        Job job = Job.getInstance(conf, new LineDemo().getClass().getSimpleName());
 
        job.setMapperClass(Friend1Mapper.class);
        job.setReducerClass(Friend1Reducer.class);
        // 设置map阶段的输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        // 最终结果的数据类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        // job.setNumReduceTasks(2);  //启动3个reduce任务
        // 待处理数据的路径
        FileInputFormat.setInputPaths(job, new Path("D:\\data\\friend\\input"));
        FileOutputFormat.setOutputPath(job, new Path("D:\\data\\friend\\out2"));
        job.waitForCompletion(true);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值