解以下方程
用P-R ADI 格式
对于Laplace算子的处理
- 第一步对xx用显式,yy用隐式。
- 第二步对yy用显式,xx用隐式。
%**************************************************************
%MAIN.m
clc
clear
a=0; b=1; %x取值范围
c=0; d=1; %y取值范围
tfinal = 1; %最终时刻
t=1/1600;%时间步长;
h=1/40;%空间步长
r=t/h^2;%网比
x=a:h:b;
y=c:h:d;
%精确解
m=40;
u1=zeros(m+1,m+1);
for i=1:m+1,
for j=1:m+1
u1(j,i) = uexact(x(i),y(j),1);
end
end
%数值解
u=ADI(a,b,c,d,t,h,tfinal);
%绘制图像
figure(1) ;mesh(x,y,u1)
figure(2); mesh(x,y,u)
%误差分析
error=u-u1;
norm1=norm(error,1);
norm2=norm(error,2);
norm00=norm(error,inf);
%**************************************************************
%ADI.m
function [u]=ADI(a,b,c,d,t,h,tfinal )
%(a , b) x取值范围
%(c, d) y取值范围
%tfinal最终时刻
%t时间步长;
%h空间步长
r=t/h^2;%网比
m=(b-a)/h;%
n=tfinal/t; %
x=a:h:b;
y=c:h:d;
%初始条件
u=zeros(m+1,m+1);
for i=1:m+1,
for j=1:m+1
u(j,i) = uexact(x(i),y(j),0);
end
end
u2=zeros(m+1,m+1);
a=-1/32*r*ones(1,m-2);
b=(1+r/16)*ones(1,m-1);
aa=-1/32*r*ones(1,m);
cc=aa;aa(m)=-1;cc(1)=-1;
bb=(1+r/16)*ones(1,m+1);
bb(1)=1;bb(m+1)=1;
for i=1:n % n time steps
%从n->n+1/2,u_{xx}implicit scheme,u_{yy}explicit scheme
for j=2:m
for k=2:m
d(k-1)=1/32*r*(u(j,k+1)-2*u(j,k)+u(j,k-1))+u(j,k);
end
% first and last term of d is zero.
%d(1)=d(1)+u1(j,1);d(m-1)=d(m-1)+u1(j,m+1);
u2(j,2:m)=Thomas(a,b,a,d);
end
u2(1,:)=u2(2,:);%u_y=0 at the boundary, if not assign value then 0
u2(m+1,:)=u2(m,:);
%从n->n+1,u_{xx}explicit,u_{yy}implicit
for k=2:m %k=1, k=m+1, boundary condition=0, no need to update
dd(1)=0;dd(m+1)=0;
for j=2:m
dd(j)=1/32*r*(u2(j+1,k)-2*u2(j,k)+u2(j-1,k))+u2(j,k);
end
u(:,k)=Thomas(aa,bb,cc,dd);
end
u2=u;
end
end
%**************************************************************
%Thomas.m
function [x]=Thomas(a,b,c,d)
%a: -1 diagonal, below diagonal line
%b: diagnal
%c: 1 diagonal, above diagonal line
%d: RHS, (diag(b)+diag(a,-1)+diag(b,1))x=d
r=size(a);
m=r(2);
r=size(b);
n=r(2);
if size(a)~=size(c)|m~=n-1|size(b)~=size(d)
error('Incompatible input dimensions !');
end
%LU decomposition
%L=
%U=diag(ones())+diag(u,1)
u(1)=b(1);
for i=2:n
l(i-1)=a(i-1)/u(i-1);
u(i)=b(i)-l(i-1)*c(i-1);
%v(i-1)=(b(i)-u(i))/l(i-1);
end
%Ly=d
y(1)=d(1);
for i=2:n
y(i)=d(i)-l(i-1)*y(i-1);
end
%Ux=y
x(n)=y(n)/u(n);
for i=n-1:-1:1
x(i)=y(i)/u(i);
x(i)=(y(i)-c(i)*x(i+1))/u(i);
end
end
%**************************************************************
%uexact.m
function [ f]=uexact(x,y,t)
f=sin(x*pi)*cos(y*pi)*exp(-pi*pi/8*t);
end