
缺陷检测
文章平均质量分 86
检测类型:视觉检测、自动化检测、材料缺陷检测等。
面向技术开发者、质量控制工程师
Happy Monkey
15年的OEM工厂生产,工程管理经验,2019年进入IT行业,深耕MES系统&MES系统周边设备程序的二次开发,熟悉使用MSSQL,MYSQL,CSDN优质创作者,提供MES系统业务,VB,C#,HALCON,PYTHON平台等方面的服务,如有需要请站内私信或者联系任意文章底部的VX名片(ID:z3405211980)
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
识别和分析图像中的不良焊点
这段代码通过一系列的图像处理操作,识别和分析图像中的不良焊点,并将它们与好区域区分开来。最后,它显示了原始图像以及识别出的好区域和不良区域。原创 2024-08-09 06:48:26 · 1298 阅读 · 32 评论 -
识别并标记出瓶口上的缺陷
这个脚本使用了HALCON的多种图像处理功能,包括形态学操作、边缘检测、轮廓拟合、极坐标变换等,是一个典型的机器视觉应用示例。原创 2024-08-04 04:55:50 · 554 阅读 · 0 评论 -
LCD缺陷监测
整体来看,这段代码是一个自动化的图像分析流程,用于检测和测量液晶显示屏单元格中的条纹宽度和缺陷数量。这对于质量控制和缺陷检测是非常有用的。原创 2024-08-01 17:01:14 · 532 阅读 · 0 评论 -
检测塑料网孔的缺陷
整个流程是一个自动化的图像处理和机器学习分类过程,用于在生产环境中快速准确地检测塑料网孔的缺陷。通过新颖性检测,SVM能够识别出与训练样本不同的异常区域,从而实现缺陷的自动检测。原创 2024-08-01 16:18:17 · 827 阅读 · 11 评论 -
检测物体表面的缺陷
代码的最终目的是在水疱的背面图像中检测出缺陷,并将这些缺陷在高斯曲率图像和反照率图像中标记出来。这对于质量控制和缺陷检测非常有用,尤其是在制造过程中。通过光度立体技术,可以更准确地分析物体表面的微小变化,从而提高检测的准确性。原创 2024-07-18 06:25:28 · 776 阅读 · 0 评论 -
检测和增强图像中的划痕(scratches)
这段代码通过图像处理技术检测图像中的划痕,并通过形态学操作和频率域滤波来增强和分割这些划痕。最终在图像中高亮显示划痕区域。原创 2024-07-18 05:48:09 · 1114 阅读 · 0 评论 -
图像匹配和模板识别
代码中使用了多种匹配技术,包括自适应模板匹配和多尺度匹配,这些技术可以提高匹配的准确性和鲁棒性,尤其是在图像中存在噪声或变形时。通过在匹配成功的位置上绘制圆圈,可以直观地显示识别到的特征或对象的位置。原创 2024-07-15 06:45:05 · 651 阅读 · 0 评论 -
自动检测剃须刀片(razor blades)的缺陷
这段代码解决了在生产线上自动检测剃须刀片缺陷的问题,通过自动化这一过程,可以提高生产效率,减少人为错误,并确保产品质量。使用并行处理可以显著提高检测速度,因为可以同时检测多个剃须刀片。原创 2024-07-15 06:39:29 · 788 阅读 · 0 评论 -
自动检测安瓿填充水平
这段代码解决了在生产线上自动检测安瓿填充水平的问题,确保填充量符合质量标准。通过自动化这一过程,可以提高生产效率,减少人为错误,并确保产品质量。原创 2024-07-15 06:33:52 · 2171 阅读 · 0 评论 -
检测图像中的缺陷
整个脚本的目的是自动化地检测图像中的缺陷,并通过可视化的方式报告检测结果原创 2024-07-10 20:45:46 · 660 阅读 · 0 评论 -
sklearn的基础教程
Scikit-learn(简称sklearn)是一个基于Python的开源机器学习库,它建立在NumPy、SciPy和matplotlib这些科学计算库之上,提供了简单而高效的数据挖掘和数据分析工具原创 2024-07-04 14:13:08 · 228 阅读 · 0 评论 -
图像处理和图像识别
整个脚本是一个自动化的图像检查流程,用于确保图像中的标志或物体符合特定的标准,并且没有缺陷原创 2024-06-07 20:33:35 · 446 阅读 · 0 评论 -
图像中缺陷的检测和计数
整体来看,这段代码的主要功能是读取一系列图像,对每张图像进行滤波、动态阈值处理、连通区域检测和错误区域选择,然后计算错误区域的数量,并在图像上显示。如果错误区域的数量不为,则显示“Mesh not OK”,否则显示“Mesh OK”原创 2024-06-07 05:37:52 · 362 阅读 · 0 评论 -
检测太阳能电池片(solar cell)中的缺陷区域
这段代码的主要功能是:读取多张太阳能电池片图像。对每张图像进行颜色通道分解和阈值分割,以识别电池片中的暗区域。选择好的部件和杂散区域,识别断裂的手指区域。对断裂的手指区域进行形态学操作,以隔离和可视化断裂。在窗口中显示原始图像和断裂区域,以及根据断裂数量显示相应的消息。原创 2024-06-05 23:53:28 · 586 阅读 · 0 评论 -
自动化系统识别和计数不同类型的食品
这段代码的主要功能是:读取多张鱼条包装图像。对每张图像进行阈值分割和形态学操作,以识别鱼条包装的轮廓。测量图像在鱼条包装轮廓方向上的灰度值剖面。根据灰度值剖面评估鱼条的数量和翻转情况。在新窗口中显示处理后的图像,突出显示鱼条的中心点、边缘和轮廓。原创 2024-06-05 23:44:38 · 603 阅读 · 0 评论 -
自动识别并判断图像中的威化饼是否符合特定的质量标准
自动识别并判断图像中的威化饼是否符合特定的质量标准,这对于食品加工、包装检查或任何需要自动质量控制的应用场景非常有用。原创 2024-06-05 23:19:38 · 669 阅读 · 0 评论 -
使用可变形模型和投影变换来适应对象在图像序列中的移动
整体来看,这段代码的主要功能是:初始化图像处理环境。创建一个可变形模型,用于搜索和跟踪图像中的特定对象。通过循环读取一系列图像,并在每一帧中尝试找到和跟踪对象。使用可变形模型和投影变换来适应对象在图像序列中的移动。显示跟踪结果和处理过程中的异常。最后,清除创建的可变形模型并结束程序。原创 2024-06-05 23:04:26 · 647 阅读 · 0 评论 -
识别和定位具有一定变形或变化的物体
这段代码的主要功能是:创建一个基于特定图像的可变形平面校准模型。在一系列图像中检测该模型,并可视化检测结果。处理和显示模型检测的时间和数量信息。原创 2024-06-05 20:31:21 · 676 阅读 · 0 评论 -
自动化装配线、机器人导航、质量检测
这种类型的应用在机器视觉领域非常常见,特别是在需要精确测量和定位的场景中,如自动化装配线、机器人导航、质量检测等原创 2024-06-05 20:23:23 · 638 阅读 · 0 评论 -
计算每个孔洞的圆心位置以及边界到圆心的最小和最大距离
这段代码的目的是处理一张包含多个圆形孔洞的图像,通过边缘检测和形状选择找到这些孔洞,然后计算每个孔洞的圆心位置以及边界到圆心的最小和最大距离,并将这些信息可视化显示在图像上原创 2024-06-05 20:15:38 · 553 阅读 · 0 评论 -
检测瓶子瓶颈区域是否存在缺陷
通过形态学操作、极坐标变换和动态阈值分割,代码能够识别并标记出可能的缺陷区域。最后,通过可视化展示,操作者可以直观地看到检测结果。这种自动化检测可以大大提高生产效率,减少人工检查的需要。原创 2024-06-04 16:34:29 · 672 阅读 · 0 评论 -
药丸检测例子
自动检测和分类药丸图像中的药丸,以确保药丸的数量和质量原创 2024-06-03 10:11:36 · 1306 阅读 · 0 评论