GPT-4将使ChatGPT更智能

OpenAI推出了GPT-4,其在知识和智能测试中表现提升,能处理图像和文本,但依然存在错误、幻觉和偏见问题。ChatGPT的成功展示了AI潜力,但也引发滥用担忧。微软已投资OpenAI并整合ChatGPT进Bing,预示着AI驱动的计算新时代。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

凭借其不可思议聊天机器人 ChatGPT 能够进行对话、回答问题以及撰写连贯的散文、诗歌和代码,迫使许多人重新思考人工智能的潜力。

制作ChatGPT的初创公司OpenAI宣布了备受期待的AI模型新版本。

名为 GPT-4 的新算法遵循 GPT-3,这是 OpenAI 在 2020 年宣布的开创性文本生成模型,后来被改编为去年创建 ChatGPT。

OpenAI表示,新模型在一系列旨在衡量人类和机器的智能和知识的测试中得分更高。它也会犯更少的错误,并且可以响应图像和文本。

然而,GPT-4 遇到了困扰 ChatGPT 的相同问题,并导致一些人工智能专家对其有用性持怀疑态度——包括“幻觉”错误信息的倾向,表现出有问题的社会偏见,以及在给予“对抗性”提示时行为不端或假设令人不安的角色。

“虽然他们已经取得了很大进展,但这显然是不可信的,”华盛顿大学名誉教授、艾伦人工智能研究所创始首席执行官奥伦·埃齐奥尼(Oren Etzioni)说。“在你想要任何GPT来运行你的核电站之前,还需要很长时间。

OpenAI 提供了几个来自基准测试的演示和数据,以展示 GPT-4 的功能。新模式不仅可以击败美国许多州用于使律师资格的统一律师考试的及格分数,而且它的分数在人类中排名前10%。
在生物学、艺术史和微积分等科目的其他旨在测试知识和推理的考试中,它的得分也高于 GPT-3。在计算机科学家设计的测试中,它比任何其他人工智能语言模型都获得了更好的分数,以衡量此类算法的进展。“在某些方面,它更像是相同的,”Etzioni说。“但在一系列绝对令人兴奋的进步中,情况更加相同。

GPT-4 还可以执行之前从 GPT-3 和 ChatGPT 中看到的巧妙技巧,例如总结和建议对文本片段的编辑。它还可以做其前辈无法做到的事情,包括充当苏格拉底导师,帮助引导学生正确回答和讨论照片的内容。例如,如果在厨房柜台上提供食材的照片,GPT-4 可以建议适当的食谱。如果提供图表,它可以解释可以从中得出的结论。

“它似乎确实获得了一些能力,”CMU教授Vincent Conitzer说,他专门研究人工智能,已经开始尝试新的语言模型。但他说,它仍然会犯错误,比如提出荒谬的方向或提出虚假的数学证明。

ChatGPT 以惊人的能力吸引了公众的注意力,它通过易于使用的对话界面处理了许多复杂的问题和任务。聊天机器人不像人类那样理解世界,只是用统计预测应该跟随问题的单词来回应。
但这种潜在的机制也意味着ChatGPT和类似的系统通常会编造事实。尽管OpenAI努力使该模型能够抵抗滥用,但它可能会被提示行为不端,例如建议它进行角色扮演,做一些它在直接被问到时拒绝做的事情。OpenAI表示,GPT-4提供“事实回应”的可能性增加了40%,并表示GPT-4响应应该被禁止的请求的可能性降低了82%。该公司没有说明以前的版本GPT-3提供事实不正确的响应或响应它应该拒绝的请求的频率。

尽管如此,OpenAI的联合创始人兼首席科学家Ilya Sutskever声称,这可能是新模型最重要的进步。“阻碍 ChatGPT 对许多人完成许多任务的真正有用的是可靠性,”他说。“GPT-4还没有,但它已经接近了。

CMU的Conitzer表示,GPT-4似乎包括新的护栏,以防止它产生不良响应,但补充说,其新功能可能会导致利用它的新方法。

GPT-4 的到来在科技界早已被期待,包括对未发布的软件的潜在力量进行激烈的模因制作。对于科技行业来说,这是一个令人振奋的时刻,科技行业的到来已经震撼了它,对人工智能驱动的计算新时代有了新的期望。

受到ChatGPT潜力的启发,微软今年10月向OpenAI投资了<>亿美元。接下来的一个月,它展示了其搜索引擎Bing的升级,该引擎使用ChatGPT来整理信息并回答复杂的问题。去年,微软发布了一个编码工具,它使用GPT为程序员自动完成代码块。

python库的简单实例及介绍
python傻瓜式入门
人间清醒
量化交易策略介绍
linux系统相关 - 知乎 (zhihu.com)

Milvus开源的向量相似度搜索引擎
python的WPS-SDK-Python库提供哪些功能
python可操作wps文档
python 如何解析PDF文件,并将其翻译为其他语言
windows下好用的latex编辑器
OpenCV的图像分割分水岭算法(watershed algorithm)示例
opencv多线程视频处理示例
几种常用的开源协议
python的ast库的使用
python 随机投影(Random Projection,简称RP)
python进行因子分析(Factor Analysis,简称FA)
python进行多维缩放(MDS)
python进行局部线性嵌入(LLE)LocallyLinearEmbedding
数据降维技术和算法
Python的opencv库进行三维重建
openAi 的API将交易数据归入预定义的类别中
Python的opencv库进行图像分割
简单的聚类算法应用
openai的API使用Embeddings文本分类的示例
openai 的API 从自然语言生成sql语句

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

openwin_top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值