MATLAB在做图像处理时容易出现的一个误区:为提高运算速度使用预先声明的零矩阵存储图像数据

预先声明零矩阵以提升MATLAB图像处理运算速度看似正确,但会导致数据精度变化,可能引发错误。应避免此做法,或在读取图像后根据数据类型声明相同类型的零矩阵,以保持数据准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MATLAB在做图像处理时容易出现的一个误区:为提高运算速度使用预先声明的零矩阵存储图像数据。

这个误区很隐蔽,因为这样预先声明的零矩阵可以显著提高运算速度,所以往往会认为是正确的做法。但是为了保证图像数据看起来正常,往往又需要使用im2double函数将输入的图像数据转化为double类型的矩阵,这样imshow出来的图像看起来正常,实际上图像数据由于格式转换导致精度已经有所变化,做数据处理时往往容易报错。

如下:注释部分的代码容易导致图像数据变化。

src_img = strcat(img_path, img_name);
pure_name = size(img_name,2);
pic_odd_name = strcat(img_name(1:pure_name-4), '_odd.bmp');
pic_even_name = strcat(img_name(1:pure_name-4), '_even.bmp');
pic = imread(src_img);
% pic = im2double(pic);
[pic_height, pic_width, rgb_depth] = size(pic);
% pic_odd = zeros([pic_height, pic_width/2, rgb_depth]);
% pic_even = zeros([pic_height, pic_width/2, rgb_depth]);

for i = 1:1:pic_height
    for j = 1:1:pic_width
%         for k = 1:1:rgb_depth
            if(mod(j,2) == 1)   % eve
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吉大秦少游

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值