差分约束系统----最短路径算法的应用

本文介绍差分约束系统的基本概念及其与单源最短路问题之间的联系。通过将差分约束条件转化为图中的有向边,利用最短路径算法来寻找满足所有约束条件的解。同时探讨了在存在负环情况下的无解问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

差分约束系统是一种特殊的N元一次不等式组,它包含N个变量X1~Xn以及M个约束条件,每个约束条件都是由两个变量做差构成,形如Xi-Xj<=Ck,其中Ck是常数(可以是负数也可以是非负数),1<=i,j<=N,1<=k<=M.我们要解决的问题是求一组解,X1=a1,X2=a2,X3=a3,…,XN=aN,使得所有条件都得以满足。
差分约束系统的每一个约束条件Xi-Xj<=Ck可以变形为Xi<=Xj+Ck。这与单源最短路问题中的三角不等式dist[y]<=dis[x]+z非常相似。因此可以把每个变量Xi看作有向图中的一个结点i,对于每一个约束条件Xi-Xj<=Ck,从节点j到i的一条长度为Ck的有向边。
注意到,如果{a1,a2,…,an}为一组解,那么对任意的常数d,{a1+d,a2+d,…,an+d}也是一组解(做差后d正好被消掉)。
设dist[0]=0,以0为起点求单源最短路。若图中存在负环,则给定的差分约束系统无解。否则,Xi=dist[i]就是差分约束系统里的一组解。
在某些题目中,约束条件为形如Xi-Xj>=Ck.我们仍看作是从j到i连成长度为Ck的有向边,只是改为计算单源最长路,如图中存在正环则无解。当然我们也可以把约束条件转换成Xj-Xi<=-Ck,再按照单源最短路进行计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值