A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))
Now it is your job to judge if a given subset of vertices can form a maximal clique.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers Nv (≤ 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.
After the graph, there is another positive integer M (≤ 100). Then M lines of query follow, each first gives a positive number K (≤ Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.
Output Specification:
For each of the M queries, print in a line Yes if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print Not Maximal; or if it is not a clique at all, print Not a Clique.
Sample Input:
8 10
5 6
7 8
6 4
3 6
4 5
2 3
8 2
2 7
5 3
3 4
6
4 5 4 3 6
3 2 8 7
2 2 3
1 1
3 4 3 6
3 3 2 1
Sample Output:
Yes
Yes
Yes
Yes
Not Maximal
Not a Clique
题目大意:
clique是一个点集,任意两点都是相连的。
maximal clique是最大的clique,标志是不能再加入任何一个点构成一个clique
给定一个Nv个顶点,Ne条边的无向图
M次询问
每次询问给定K个点,这K个点是否是maximal clique;是否是一个clique;
分析:
- 判断是否是clique,即判断是否任意两边都相连;
- 判断是否是maximal,即遍历剩余点,看是否存在一个点和集合中所有的结点相连
#include <iostream>
#include <cstdio>
#include <vector>
#include <unordered_map>
using namespace std;
const int maxn = 210;
int E[maxn][maxn];
int n, m; // n个点,m条边
// 是否全部相连
bool isClique(vector<int> v)
{
int num = v.size();
for (int i = 0; i < num; i ++)
{
for (int j = 0; j < num; j ++)
{
if (i==j) continue;
if (!E[v[i]][v[j]]) return false;
}
}
return true;
}
bool isMaximal(vector<int>v, unordered_map<int, bool> hash)
{
int num = v.size();
for (int i = 1; i <= n; i ++)
{
if (!hash[i])
{
int j = 0;
for (; j < num; j ++)
if (!E[i][v[j]])
break;
if (j == num)
return false;
}
}
return true;
}
int main()
{
// freopen("/Users/zhbink/Documents/C++/C++/in.txt","r",stdin);
cin >> n >> m;
for (int i = 0; i < m; i ++)
{
int a, b;
cin >> a >> b;
E[a][b] = 1;
E[b][a] = 1;
}
int q;
cin >> q;
while (q --)
{
int k;
cin >> k;
vector<int> v(k);
unordered_map<int, bool> hash;
for (int i = 0; i < k; i ++)
{
cin >> v[i];
hash[v[i]] = 1;
}
if (!isClique(v))
puts("Not a Clique");
else
{
if (isMaximal(v, hash)) puts("Yes");
else puts("Not Maximal");
}
}
return 0;
}