AI学习指南DeepSeek篇(12)-论文导读 Native Sparse Attention

1. 论文简介

  • 论文标题:Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention
  • 发布时间:2025 年 2 月
  • 论文地址arXiv链接
  • 主要内容
    • 动态分层稀疏策略:结合粗粒度的 token 压缩和细粒度的 token 选择,保持全局上下文感知的同时确保局部精确性。
    • 硬件对齐优化:通过算术强度均衡的算法设计,实现显著的加速,并针对现代硬件进行了优化实现。
    • 端到端训练支持:支持端到端训练,降低预训练计算成本,而不会牺牲模型性能。
    • 实验结果:在多个基准测试中,NSA 的性能与全注意力(Full Attention)模型相当甚至更优,同时在解码、前向传播和反向传播阶段均实现了显著的加速。

2. 论文摘要

  • 背景
    • 长上下
### lksa 注意力机制在自然语言处理与机器学习中的应用 #### 什么是注意力机制? 注意力机制(Attention Mechanism)是一种用于增强神经网络性能的关键技术,其核心在于允许模型动态分配权重给输入的不同部分。通过这种方式,模型可以更高效地关注重要特征而忽略无关信息[^1]。 #### Native Sparse Attention 的特点 Native Sparse Attention 是一种硬件优化的稀疏注意力方法,旨在减少计算复杂度的同时保持高性能。这种方法通过对注意力矩阵进行稀疏化操作来降低内存占用和运算量,同时保留了训练过程中的可微分特性[^2]。 #### LLaMA 中的注意力机制 LLaMA(Large Language Model Meta AI)采用了一种基于 Transformer 架构的多头自注意力机制(Multi-head Self-Attention)。这种机制的核心是通过查询键值对(Query-Key Pairing)计算相似性分数,并将其转换为概率分布以加权求和上下文向量。具体而言,其数学表达形式如下: \[ \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right)V \] 其中 \( Q \), \( K \), 和 \( V \) 分别代表查询、键和值矩阵;\( d_k \) 表示键维度大小。 以下是实现该公式的 Python 示例代码: ```python import torch import math def scaled_dot_product_attention(query, key, value): """ 计算缩放点积注意力。 参数: query (Tensor): 查询张量形状为 [batch_size, num_heads, seq_len_q, depth]. key (Tensor): 键张量形状为 [batch_size, num_heads, seq_len_k, depth]. value (Tensor): 值张量形状为 [batch_size, num_heads, seq_len_v, depth]. 返回: Tensor: 输出张量. """ matmul_qk = torch.matmul(query, key.transpose(-2, -1)) dk = query.size()[-1] logits = matmul_qk / math.sqrt(dk) attention_weights = torch.nn.functional.softmax(logits, dim=-1) output = torch.matmul(attention_weights, value) return output ``` #### 结合 Natural Sparse Attention 改进 LLaMA 性能的可能性 将 Native Sparse Attention 应用于像 LLaMA 这样的大型语言模型中,可以通过引入稀疏模式显著提高推理速度并节省存储空间。这使得更大规模的数据集得以被有效利用,在资源受限环境下尤为有用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值