深度学习 の 经典网络结构&&设计原则

本文介绍了ImageNet竞赛中出现的经典深度学习网络结构,包括AlexNet、VGG、GoogLeNet及ResNet等,并探讨了这些网络的设计原则。AlexNet通过两块GPU实现了高效计算,大幅降低了误差率;VGG则以其简洁的设计而闻名;GoogLeNet引入了全局平均池化技术,减少了参数量;ResNet通过残差模块解决了深层网络训练难题。



一. 经典的网络结构

ImageNet 是一个分类大赛,在这个上面的分类。
下边的网络主要是做图像分类的。

在这里插入图片描述




1.Alexnet

AlexNet有60 million个参数和65000个 神经元,五层卷积,三层全连接网络,最终的输出层是1000通道的softmax。AlexNet利用了两块GPU进行计算,大大提高了运算效率,并且在ILSVRC-2012竞赛中获得了top-5测试的15.3%error rate, 获得第二名的方法error rate 是 26.2%,可以说差距是非常的大了,足以说明这个网络在当时给学术界和工业界带来的冲击之大。

在这里插入图片描述

2.VGG

在这里插入图片描述
在这里插入图片描述

3.GoogLeNet (Inception V1,V2,V3)

在这里插入图片描述



全局平均池化的提出,在VGG 等结构里面,全连接层占用了大量的参数,所以在 Goodnet 里面,提出了使用全局平均池化来替代全连接层。

说白了,就是从特征图中求平均,这样的话被证明,对精确度的并没有造成很大程度上的降低。

在这里插入图片描述

还添加了两个辅助分类器
就是在梯度进行反向传播的时候,会出现梯度消失的问题,这个时候,就要使用辅助分类器,把最后正确的结果呢,然后再穿进去一遍。
GoogleNet 之所以会这么宽,就是因为他把所有要考虑到的情况都考虑进去了。

在这里插入图片描述




4.ResNet、ResNeXt

残差神经网络 , 就是相当于把错误的一部分提出来了,然后把搞错了继续再弄。

在这里插入图片描述

在这里插入图片描述



二. 设计原则

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值