TimeBridge论文中公式引出对注意力公式的思考

Q,K,V

V类似于构建特征的基向量的概念,以上公式使用了残差连接,Pc作为V保证了残差相加的特征在一个特征空间上。

重点解释注意力公式attention:

如果Q,K相同,相乘得到的是一个对称矩阵,对称性适合捕捉双向关联,且计算效率高,缺点是无法建模方向性关系{如A导致B和B导致A无法作区分}。此时注意力机制退化成一种自相似性探测器。

当Q=K时,每一行时某个位置的主动“提问”,决定它关注哪些位置;每一列是某个位置的被动“应答”,决定它被哪些位置关注。

例如

行(查询者)\列(被检索者)

A

B

C

A

0.8

0.2

0.1

B

0.2

0.6

0.3

C

0.1

0.3

0.7

行分析:

第一行,A作为查询者,A最关注自己,少关注B,C

列分析:

第一列。A作为被检索者,A最被自己关注,少量被B,C关注

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值