110.平衡二叉树
题目链接:110. 平衡二叉树 - 力扣(LeetCode)
题目讲解:代码随想录
递归:对于一颗树,它是一个平衡二叉树需要满足三个条件:它的左子树是平衡二叉树,它的右子树是平衡二叉树,它的左右子树的高度差不大于1。需要依次判断,注意三个条件都不满足的情况下返回的是最大高度,因为要判断leftd-rightd绝对值的大小。
class Solution {
public boolean isBalanced(TreeNode root) {
return depth(root)!=-1;
}
public int depth(TreeNode root){
if(root==null)
return 0;
int leftd=depth(root.left);
if(leftd==-1)
return -1;
int rightd=depth(root.right);
if(rightd==-1)
return -1;
if(Math.abs(leftd-rightd)>1)
return -1;
return Math.max(leftd,rightd)+1;
}
}
257.二叉树的所有路径
题目链接:257. 二叉树的所有路径 - 力扣(LeetCode)
题目讲解:代码随想录
递归回溯:好难理解,力扣题解是比较容易理解代码,但原理不是很透彻。代码随想录的很全面,但是写不出来,要考虑的太多了。照着理解之后看着写的,之后可以重做。
class Solution {
public List<String> binaryTreePaths(TreeNode root) {
List<String> ans=new LinkedList<>();
findpath(root,"",ans);
return ans;
}
public void findpath(TreeNode root,String path,List<String> ans){
if(root!=null){
StringBuffer tpath=new StringBuffer(path);
tpath.append(Integer.toString(root.val));
if(root.left==null && root.right==null)
ans.add(tpath.toString());
else{
tpath.append("->");
findpath(root.left,tpath.toString(),ans);
findpath(root.right,tpath.toString(),ans);
}
}
}
}
404.左叶子之和
题目链接:404. 左叶子之和 - 力扣(LeetCode)
题目讲解:代码随想录
递归:当满足是左结点+是叶子结点时,将值加入到和中。
class Solution {
int sum=0;
public int sumOfLeftLeaves(TreeNode root) {
if(root==null)
return sum;
if(root.left!=null && root.left.left==null && root.left.right==null){
sum+=root.left.val;
}
sumOfLeftLeaves(root.left);
sumOfLeftLeaves(root.right);
return sum;
}
}
222.完全二叉树的节点个数
题目链接:222. 完全二叉树的节点个数 - 力扣(LeetCode)
题目讲解:代码随想录
递归
class Solution {
public int countNodes(TreeNode root) {
if(root==null)
return 0;
return countNodes(root.left)+countNodes(root.right)+1;
}
}