前言
本题摘自剑指offer的经典例题,由于剑指offer官方解读基本上都是C语言,因此博主将使用JAVA语言
进行翻译;
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
解题方法
方法一:递归
假设f[i]表示在第i个台阶上可能的方法数。假设有n层台阶,从第n个台阶进行下台阶,下一步有2中可能,一种走到第n-1个台阶,一种是走到第n-2个台阶。所以f[n] = f[n-1] + f[n-2]。如此反复,当最后为f[0]时,方法数返回加1,将所有的f[0]加起来就是最后得到的方法数。
public class Solution {
public int JumpFloor(int target) {
// if(target <= 1){
// return 1;
// }
if(target == 0){
return 1;
}
if(target < 0){
return 0;
}
return JumpFloor(target-1)+JumpFloor(target-2);
}
}
时间复杂度:O(2^n)
空间复杂度:递归栈的空间
可以看到,该方法虽然好想,代码少,但是时间复杂度极高。
方法二:记忆化搜索
方法一中,存在很多重复计算,例如 假设n=4;f[4] = f[3]+f[2]=f[1]+f[2]+f[2];其实可以看到,把f[3]分解成f[1]+f[2]后,再计算后面的f[2]就重复了。为了改进,我们把计算过的保存下来。使用数组集合都可以,杀鸡焉用牛刀?这里使用数组就可以了。
public class Solution {
public int JumpFloor(int target) {
int[] jump = new int[40]; //初始化数组,java中默认为0;
return JumpNum(target,jump);
}
public int JumpNum(int n,int[] jump){
if(n<=1){
return 1;
}
if(jump[n] != 0){ //如果数组中已经存在某个运算结果,直接调用即可;
return jump[n];
}
return jump[n] = JumpNum(n-1,jump) + JumpNum(n-2,jump);
}
}
时间复杂度:O(n), 没有重复的计算
空间复杂度:O(n)和递归栈的空间
可以看到,相对比与方法1,方法2更加优越。
方法三:动态规划
虽然方法二可以解决此题了,但是如果想让空间继续优化,那就用动态规划,优化掉递归栈空间。方法二是从上往下递归的然后再从下往上回溯的,最后回溯的时候来合并子树从而求得答案。那么动态规划不同的是,不用递归的过程,直接从子树求得答案。过程是从下往上。
public class Solution {
public int JumpFloor(int target) {
int[] jump = new int[40];
jump[0] = jump[1] = 1;
for(int i = 2; i <= target; ++i){
jump[i] = jump[i-1] + jump[i-2];
}
return jump[target];
}
}
时间复杂度:O(n)
空间复杂度:O(n)
可以看到,该方法相当于把有规律的结果(费那波切函数)直接输入到数组中,不易想到;
总结
博主当时编写的时候第一反应就是法1递归,法2的记忆方法很巧妙,值得学习,但是动态规划感觉是已知道结果为导向,不是很容易掌握。