跳台阶-JAVA实现

前言

本题摘自剑指offer的经典例题,由于剑指offer官方解读基本上都是C语言,因此博主将使用JAVA语言进行翻译;

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

解题方法

方法一:递归

假设f[i]表示在第i个台阶上可能的方法数。假设有n层台阶,从第n个台阶进行下台阶,下一步有2中可能,一种走到第n-1个台阶,一种是走到第n-2个台阶。所以f[n] = f[n-1] + f[n-2]。如此反复,当最后为f[0]时,方法数返回加1,将所有的f[0]加起来就是最后得到的方法数。

public class Solution {
    public int JumpFloor(int target) {
    //  if(target <= 1){
    //	    return 1;
    //  }
        if(target == 0){
            return 1;
        }
        if(target < 0){
            return 0;
        }
        return JumpFloor(target-1)+JumpFloor(target-2);
    }
}

在这里插入图片描述
时间复杂度:O(2^n)
空间复杂度:递归栈的空间
可以看到,该方法虽然好想,代码少,但是时间复杂度极高。

方法二:记忆化搜索

方法一中,存在很多重复计算,例如 假设n=4;f[4] = f[3]+f[2]=f[1]+f[2]+f[2];其实可以看到,把f[3]分解成f[1]+f[2]后,再计算后面的f[2]就重复了。为了改进,我们把计算过的保存下来。使用数组集合都可以,杀鸡焉用牛刀?这里使用数组就可以了。

public class Solution {
    public int JumpFloor(int target) {
        int[] jump = new int[40]; //初始化数组,java中默认为0;
        return JumpNum(target,jump);
    }
    public int JumpNum(int n,int[] jump){
        if(n<=1){
            return 1;    
        }
        if(jump[n] != 0){   //如果数组中已经存在某个运算结果,直接调用即可;
            return jump[n];
        }
        return jump[n] = JumpNum(n-1,jump) + JumpNum(n-2,jump);
    }
}

在这里插入图片描述
时间复杂度:O(n), 没有重复的计算
空间复杂度:O(n)和递归栈的空间
可以看到,相对比与方法1,方法2更加优越。

方法三:动态规划

虽然方法二可以解决此题了,但是如果想让空间继续优化,那就用动态规划,优化掉递归栈空间。方法二是从上往下递归的然后再从下往上回溯的,最后回溯的时候来合并子树从而求得答案。那么动态规划不同的是,不用递归的过程,直接从子树求得答案。过程是从下往上。

public class Solution {
    public int JumpFloor(int target) {
        int[] jump = new int[40];
        jump[0] = jump[1] = 1;
        for(int i = 2; i <= target; ++i){
            jump[i] = jump[i-1] + jump[i-2];
        }
        return jump[target];
    }
}

时间复杂度:O(n)
空间复杂度:O(n)
可以看到,该方法相当于把有规律的结果(费那波切函数)直接输入到数组中,不易想到;

总结

博主当时编写的时候第一反应就是法1递归,法2的记忆方法很巧妙,值得学习,但是动态规划感觉是已知道结果为导向,不是很容易掌握。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值