dp之基

在这里插入图片描述
有些题表面上看是一道字符串问题,实际却是一道dp.
我们可以知道,在每一个位置有两种状态,i表示a串下标,j表示b串下标。

1、a[i]==b[i] --> dp[i][j]=dp[i-1][j-1]+1

2、a[i]!=b[j]–> dp[i][j]=max(dp[i][j-1],dp[i-1][j]

所以判断每个位置的状态,DP求解就可以了。
思路确实很简单,下面我们直接上代码

#include<bits/stdc++.h>
using namespace std;
string a,b;
int dp[10001][10001];
int main()
{
    cin>>a>>b;
    int la=a.length(),lb=b.length();
    for(int i=1;i<=la;i++)
    {
        for(int j=1;j<=lb;j++)
        {
            if(a[i-1]==b[j-1]) dp[i][j]=dp[i-1][j-1]+1;
            else dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
        }
    }
    cout<<dp[la][lb]<<endl;
    return 0;
}

这道题非常简单,所以我们要去注意一些细节,我们首先要知道这里面dp数组的默认值都是0,这点是很重要的,别的好像也没啥了,就这吧。

标题SpringBoot层智能化人员调度系统研究AI更换标题第1章引言介绍SpringBoot层智能化人员调度系统的研究背景、意义、现状以及论文的研究方法和创新点。1.1研究背景与意义分析当前层人员调度的现状和问题,阐述智能化调度的必要性和意义。1.2国内外研究现状概述国内外在层智能化人员调度系统方面的研究进展和应用情况。1.3论文方法及创新点介绍本文采用的研究方法和实现智能化人员调度系统的创新点。第2章相关理论阐述SpringBoot框架、智能化调度算法和人员调度理论。2.1SpringBoot框架概述介绍SpringBoot框架的特点、优势和应用场景。2.2智能化调度算法总结现有的智能化调度算法,并分析其优缺点。2.3人员调度理论础阐述人员调度的本概念、原则和方法。第3章系统需求分析对SpringBoot层智能化人员调度系统进行需求分析,包括功能性需求和非功能性需求。3.1功能性需求明确系统需要实现的功能,如人员信息管理、任务分配、调度策略制定等。3.2非功能性需求分析系统的性能、安全性、可靠性等非功能性需求。3.3需求优先级划分根据实际需求,对各项需求进行优先级划分。第4章系统设计详细介绍SpringBoot层智能化人员调度系统的设计方案,包括架构设计、数据库设计和界面设计。4.1架构设计给出系统的整体架构,包括前后端分离、微服务架构等设计理念。4.2数据库设计设计合理的数据库表结构,满足系统的数据存储和查询需求。4.3界面设计设计简洁、易用的用户界面,提升用户体验。第5章系统实现阐述SpringBoot层智能化人员调度系统的具体实现过程,包括核心代码实现、功能模块实现等。5.1核心代码实现详细介绍系统核心功能的代码实现,如人员信息管理、任务分配算法等。5.2功能模块实现分别介绍各个功能模块的实现过程,如用户登录、人员信息管理、任务管理等。第6章系统
<think>好的,我现在需要给用户介绍一下“环dp”。首先,我得弄清楚这个概念到底是什么。用户可能指的是在树形动态规划(树形DP)中处理带有环的情况,或者是在环树(环加树结构)上应用动态规划(DP)。根据常见的算法术语,“环树”是指一个图中包含一个环,并且环上的每个节点都可能连接着一棵树的结构,所以“环dp”应该是在环树上进行的动态规划。 接下来,我需要确认环树的本概念。环树,也称为环加外向树,是由一个环和若干棵以环上节点为根的外向树组成的图。这种结构在算法题中常见,比如处理有向图中的特定问题或者某些无向图中的问题。 然后,动态规划在树结构中的应用通常是处理子树问题,但当图中有环时,传统的树形DP无法直接应用,因为环会导致循环依赖。因此,处理环树的DP通常需要特殊的技巧,比如破环成链,将环拆解后转化为树结构,再分别处理每个子树的信息,最后合并结果。 接下来,我需要理清处理环树DP的典型步骤。可能包括以下几个步骤: 1. 找到图中的环,这可以通过拓扑排序、DFS等方法实现。 2. 对环上的每个节点,处理其子树(即该节点连接的不在环上的部分)的DP信息,类似于普通树形DP。 3. 破环,将环拆成链,以便在链上进行动态规划,处理环上的依赖关系。 4. 合并子树和环上的结果,得到最终答案。 例如,常见的题目可能是在环树中求最大独立集或者最小顶点覆盖。这种情况下,需要分别处理环上的节点和其子树,然后考虑环上节点的选择情况,避免冲突。 同时,用户可能需要具体的例子来理解这个过程。比如,洛谷中的某些题目,如P2607 [ZJOI2008] 骑士,这道题就是环树DP的典型应用。题目中的每个骑士有一个讨厌的另一个骑士,形成环树结构,要求选出最大权值的独立集(即选中的骑士之间没有直接相连的边)。处理方法是找到环,断开环中的一条边,转化为树形DP,分别考虑断开边的两端节点是否被选中,取最大值。 不过,用户可能对具体的实现步骤感兴趣,比如如何找环,如何处理断开后的树,如何合并结果。需要详细说明这些步骤,但要注意不要过于技术化,保持解释的清晰。 另外,需要确保使用正确的中文术语,比如“动态规划”而不是“DP”,虽然缩写DP也常用。同时,注意数学表达式的格式,如变量用$...$包裹,独立公式用$$...$$。 可能还需要比较环树DP与普通树形DP的区别,强调处理环的关键步骤,比如破环和合并结果。同时,指出环树DP的时间复杂度通常与环的长度有关,可能为O(n)或O(k)其中k是环的长度。 最后,总结环树DP的应用场景和解决思路,帮助用户形成整体认识。</think>环树动态规划(环DP)是一种处理**环树**结构上动态规划问题的算法策略。以下分步骤介绍其核心思想与应用: --- ### 1. **环树础** **环树**是由一个环和若干棵以环上节点为根的外向树组成的图(如图1)。 $$ \text{环树} = \text{环} + \text{多棵外向树} $$ 特点:存在唯一环,其余部分为树结构。 --- ### 2. **环DP的核心挑战** - **循环依赖**:环的存在导致传统树形DP无法直接应用(子树依赖成环)。 - **破环成树**:需将环拆解为链,转化为树结构后再处理。 --- ### 3. **算法步骤** #### **步骤1:找环** - **方法**:DFS、拓扑排序(逐步删除度为1的节点,剩余子图即为环)。 - **示例代码逻辑**: ```python def find_cycle(): 通过DFS标记访问路径,回溯找到环的起点和终点 ``` #### **步骤2:处理子树** 对环上每个节点$u$,单独处理其**外向树**的DP信息(与普通树形DP相同)。 例如:计算子树最大权值、独立集等。 #### **步骤3:破环并处理环上DP** - **破环**:选择环上一条边$u \to v$,断开后形成链。 - **环上DP**:在链上做两次动态规划(强制$u$选/不选,避免循环依赖)。 #### **步骤4:合并结果** 将子树结果与环上DP结果结合,取全局最优解。 --- ### 4. **典型例题分析** #### **题目:P2607 [ZJOI2008] 骑士** - **题意**:环树森林中选互不攻击的骑士,求最大权值和。 - **解法**: 1. 对每棵环树,找到环并断开边$u \to v$。 2. 对断开后的树做两次树形DP: - 强制不选$u$,计算最大值。 - 强制不选$v$,计算最大值。 3. 取两次结果的最大值,累加所有环树的答案。 --- ### 5. **时间复杂度** - 找环:$O(n)$ - 子树DP:$O(n)$ - 环上DP:$O(k)$($k$为环长) - **总复杂度**:$O(n)$ --- ### 6. **关键技巧** - **破环法**:通过断开环上一条边,将问题转化为树形DP。 - **状态设计**:需考虑环上节点的约束(如是否被选中)。 --- ### 7. **应用场景** - 环树上的最大独立集、最小覆盖集。 - 带环图中的路径计数、最优化问题。 通过以上步骤,环DP能有效处理带环结构的动态规划问题,核心思想是将环转化为链,分情况讨论以消除循环依赖。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值