ubuntu系统中使用python脚本下载MNIST数据集

目录

下载MNIST的python文件


在机器学习和深度学习领域,MNIST(Modified National Institute of Standards and Technology)数据集是一个经典且广泛使用的手写数字识别数据集。该数据集包含60000个训练样本和10000个测试样本,数据格式简单,适合初学者进行模型训练和验证。

MNIST数据集由手写数字图像及其对应的标签组成。每张图像为28x28像素的灰度标签则是数字0到9。MNIST数据集的目标是预测输入图像所代表的数字。

可以参考的链接

如何下载mnist数据集python_mob64ca12d84572的技术博客_51CTO博客

详解MNIST数据集下载、解析及显示的Python实现-CSDN博客

下载MNIST的python文件

from tensorflow import keras
from keras.datasets import mnist
import os
import numpy as np

# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# 打印数据集信息
print("训练集图像数量:", x_train.shape[0])
print("测试集图像数量:", x_test.shape[0])
print("图像大小:", x_train.shape[1:])

# 保存数据集
save_dir = "./"
if not os.path.exists(save_dir):
    os.makedirs(save_dir)

# 保存训练集
np.savez_compressed(os.path.join(save_dir, "train_images.npz"), x_train)
np.savez_compressed(os.path.join(save_dir, "train_labels.npz"), y_train)

# 保存测试集
np.savez_compressed(os.path.join(save_dir, "test_images.npz"), x_test)
np.savez_compressed(os.path.join(save_dir, "test_labels.npz"), y_test)

print("数据集已保存到目录:", save_dir)

运行后:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值