目录
在机器学习和深度学习领域,MNIST(Modified National Institute of Standards and Technology)数据集是一个经典且广泛使用的手写数字识别数据集。该数据集包含60000个训练样本和10000个测试样本,数据格式简单,适合初学者进行模型训练和验证。
MNIST数据集由手写数字图像及其对应的标签组成。每张图像为28x28像素的灰度标签则是数字0到9。MNIST数据集的目标是预测输入图像所代表的数字。
可以参考的链接
如何下载mnist数据集python_mob64ca12d84572的技术博客_51CTO博客
详解MNIST数据集下载、解析及显示的Python实现-CSDN博客
下载MNIST的python文件
from tensorflow import keras
from keras.datasets import mnist
import os
import numpy as np
# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 打印数据集信息
print("训练集图像数量:", x_train.shape[0])
print("测试集图像数量:", x_test.shape[0])
print("图像大小:", x_train.shape[1:])
# 保存数据集
save_dir = "./"
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# 保存训练集
np.savez_compressed(os.path.join(save_dir, "train_images.npz"), x_train)
np.savez_compressed(os.path.join(save_dir, "train_labels.npz"), y_train)
# 保存测试集
np.savez_compressed(os.path.join(save_dir, "test_images.npz"), x_test)
np.savez_compressed(os.path.join(save_dir, "test_labels.npz"), y_test)
print("数据集已保存到目录:", save_dir)
运行后: