stable diffusion 优化加速文生图效率

参考自:Accelerate inference of text-to-image diffusion models

默认使用diffusers

1.bfloat16

使用 torch.bfloat16 或者torch.float16,降低数据精度能加快推理速度,并且对结果的影响也很小。
如果GPU的内存不足,也可以使用torch.bfloat16 或者torch.float16,能降低内存占用。

pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16
).to("cuda")

2.SDPA

scaled_dot_product_attention,在diffusers中已经默认使用。

scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)
将scores除以d_k的平方根(np.sqrt(d_k)),这就是所谓的缩放,已经是transformers的默认操作了。

3.torch.compile

需要PyTorch 2 以上版本。第一次编译会很慢,编译好了推理会提速很多。

from diffusers import StableDiffusionXLPipeline
import torch

torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor
### 使用 Stable Diffusion API 实现文本到像生成功能 为了实现从文本生成像的功能,`stable-diffusion-api-server` 提供了一个本地API服务器接口来访问Stable Diffusion模型[^1]。该服务允许开发者通过HTTP请求提交文本描述,并接收由模型生成的对应像作为响应。 下面是一个简单的Python脚本示例,展示了如何调用此API来进行文本转像的操作: ```python import requests from PIL import Image from io import BytesIO def generate_image_from_text(prompt, api_url='http://localhost:8080'): """ 发送POST请求给稳定扩散API以创建新象 参数: prompt (str): 文字提示语句. api_url (str): API端点URL,默认为'http://localhost:8080'. 返回: img (PIL.Image.Image): 生成的片对象. """ response = requests.post( f'{api_url}/sdapi/v1/txt2img', json={ "prompt": prompt, "steps": 50, "width": 768, "height": 768, "n_iter": 1, "batch_size": 1 } ) if response.status_code == 200: image_data = BytesIO(response.content) img = Image.open(image_data) return img else: raise Exception(f'Error generating image: {response.text}') # 测试函数 if __name__ == '__main__': try: generated_img = generate_image_from_text('a beautiful sunset over mountains') generated_img.show() except Exception as e: print(e) ``` 这段代码定义了一个名为 `generate_image_from_text()` 的函数,它可以接受一段文字描述作为参数,并向指定的API发送一个JSON格式的数据包。如果一切顺利的话,将会返回一张根据所给定的文字描述而合成的新片。 需要注意的是,实际部署环境中可能需要调整API URL以及配置其他必要的参数(比如认证令牌)。此外,对于更复杂的场景,还可以探索更多高级选项,例如设置不同的采样步数(`steps`)、宽度和高度等属性来自定义最终输出的质量与风格[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值