Java:判断有向图中的环路(DFS)

本文介绍了如何使用Java的深度优先搜索(DFS)判断有向图中是否存在环路。通过将有向图转换为邻接矩阵,然后进行DFS遍历,当遍历回溯到起始节点时,确认存在环路。还讨论了如何拓展该方法来解决实际面试中的循环依赖问题以及有向图的其他变种问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题定义

我们先从一个简单的问题展开:一个有向图G,包含了0,1,2,3,4五个顶点,其中边有0->1,1->2,2->0,0->3,0->4。判断是否出现环路。

解析

有向图如图所示:

第一步:把有向图转换为邻接矩阵:

有向图中1表示可达,0表示不可达。
第二步:遍历矩阵
遵循深度优先搜索到思路,我们这里默认按行进行遍历,对于第一行,起始节点就是第一行对应到那个元素0,遍历到第二个元素时发现不为0,则节点0可以到达节点1;接着以节点1作为中转点,遍历节点1对应的那一行,也就是矩阵中的第二行,发现节点1可以到达节点2;同理,继续遍历节点2所在的行,发现节点2可以到达节点0,而节点0正是起始节点,也就是发现了有向图中存在着环路。
具体代码如下:

import java.util.Arrays;

public class graph {
   
   
    private static boolean result = false;
    public static void main(String[] args) {
   
   
        int[][] matrix = new int[][]{
   
   {
   
   0,1,0,
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值