
pytorch
文章平均质量分 76
stsdddd
贵有恒,何必三更起五更睡;最无益,只怕一日曝十日寒
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【6DRepNet360全范围头部姿态估计onnxruntime推理】
提出了一种新的方法,用于在没有约束的情况下估计全范围旋转的头部姿态。引入了旋转矩阵形式来解决模糊的旋转标签问题,并提出了一种连续的6D旋转矩阵表示方法,以实现高效且鲁棒的直接回归。通过新累积的训练数据集和基于测地线的损失函数,设计了一个能够预测更广泛头部姿态的高级模型。在公共数据集上的广泛评估表明,该方法在效率和鲁棒性方面显著优于其他最先进的方法。使用了旋转矩阵作为旋转表示,以克服欧拉角和四元数表示中的歧义和不连续性问题。提出了一种基于测地距离的损失函数,以稳定学习过程。原创 2024-09-21 20:23:13 · 1355 阅读 · 0 评论 -
【CNN训练梯度裁剪】
梯度裁剪(Gradient Clipping)是一种防止梯度爆炸或梯度消失的优化技术,它可以在反向传播过程中对梯度进行缩放或截断,使其保持在一个合理的范围内。原创 2024-09-05 22:41:03 · 723 阅读 · 0 评论 -
【灰度图&图像间转换】
是将可能是读取的灰度图转为RGB,这里明显将通道数增加到 3, 需要注意从opencv转PIL中的cv2.cvtColor(opencv_image, cv2.COLOR_BGR2RGB), 是有区别的;由于只有亮度信息,因此灰度图无法表示颜色,只能表示图像的亮度和对比度。灰度图是一种图像表示方法(在计算机中的表示方法),其中像素的亮度值表示该像素在图像中的颜色信息,而色彩信息则被忽略。模式(Mode):表示图像的颜色模式,常见的模式包括 “RGB”、“RGBA”、“L”(灰度)、“CMYK” 等。原创 2024-09-05 22:35:57 · 973 阅读 · 0 评论 -
【Transformer原理解析】
Transformer是一种基于自注意力机制(Self-Attention Mechanism)的深度学习模型,它在自然语言处理(NLP)领域取得了显著的成就,特别是在机器翻译任务中。以下是Transformer原理的简要介绍以及使用PyTorch实现的代码示例。原创 2024-04-28 21:33:14 · 497 阅读 · 0 评论 -
【图像分类优化策略】
随着深度学习技术的发展,基于深度学习的图像分类方法在性能上远远超过了传统的机器学习方法,成为了当前图像分类领域的主流方法。图像分类是计算机视觉领域中的一个重要任务,旨在将图像分为不同的类别或标签。常见的图像分类方法包括传统的机器学习方法和基于深度学习的方法。通过调整损失函数中各类别的权重来应对类别不平衡是一种常见的方法。在训练时,模型会根据这些权重来计算损失,使其更关注少数类别,从而减少将背景误分类为正例的情况。来定义每个类别的权重,然后在定义损失函数时,将这些权重传递给。原创 2024-04-10 21:48:18 · 1265 阅读 · 0 评论 -
【自动驾驶中的BEV算法】
在自动驾驶领域中,Bird’s Eye View (BEV) 算法是一种将来自不同传感器(如摄像头、激光雷达、毫米波雷达等)的数据转换为车辆正上方俯瞰视角下的统一表示的方法。这种转换使得车辆能够获得一个直观且具有空间一致性的环境感知视图,便于进行3D目标检测、追踪、地图构建和路径规划等任务。实现原理:常用的算法:代码示例:以下是一个简化的示例,说明如何在PyTorch中定义一个简单的BEV映射函数(假设已经获得了深度图):BEVFormer算法BEVFormer(Bird’s Eye View Tran原创 2024-03-13 19:28:19 · 3025 阅读 · 1 评论 -
【RepVGG网络】
RepVGG网络是2021年由清华大学、旷视科技与香港科技大学等机构的研究者提出的一种深度学习模型结构,其核心特点是通过“结构重参数化”(re-parameterization)技术,在训练阶段采用复杂的多分支结构以优化网络的训练过程,而在推理阶段则将这些分支融合成单一的卷积层,从而实现高效的前向推断。在PyTorch中实现RepVGG时,通常会定义一个RepVGGBlock类,该类在构造函数中设置训练模式下的各个卷积层,并且包含一个。方法,用于在模型部署或进行推理时将训练时的多分支结构融合为单个卷积层。原创 2024-03-12 22:50:48 · 900 阅读 · 0 评论 -
【pytorch可视化工具】
评价指标通常根据任务类型有所不同,例如分类任务中的精度、召回率、F1分数等,回归任务中的均方误差(MSE)、平均绝对误差(MAE)等。可以将这些指标也记录到TensorBoard中,就像记录损失那样。在PyTorch中,模型训练的可视化通常通过TensorBoard或Visdom等工具实现。这是一个Web-based实时数据可视化工具,可以与PyTorch一起使用来监控训练过程。原创 2024-03-09 18:14:02 · 666 阅读 · 0 评论 -
【pytorch模型加载和保存】
return x。原创 2024-03-09 18:05:32 · 422 阅读 · 0 评论 -
【pytorch矩阵应用】
当你想要将PyTorch模型导出为ONNX(Open Neural Network Exchange)格式时,矩阵乘法等模型中的操作也会被包含在导出的模型中。导出的ONNX模型包含了模型的结构和权重,以及进行前向传播所需的所有操作,包括矩阵乘法。矩阵乘法在PyTorch中是非常常见的操作,特别是在进行深度学习模型训练和推断时。总之,矩阵乘法在PyTorch中是非常常见的操作,并且有多种方法可以实现。这个函数不仅可以处理2D矩阵,还可以处理更高维度的张量,只要它们的维度是兼容的。的随机张量,代表模型的输入。原创 2024-02-29 19:56:42 · 1189 阅读 · 0 评论