网络流dinic模板

本文深入讲解了Dinic算法在网络流问题中的应用,包括算法的基本原理、数据结构设计、关键步骤如增广路查找和流量更新的实现细节。通过具体代码示例,帮助读者理解并掌握Dinic算法的实现方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

奥里给,如果下次看自己解释的这篇dinic看不懂的时候,告诉自己,网络流是板子,会建图就行。

const int N=210000;
struct node
{
    int to,cap,next;
} p[N*10];
int dis[N];
int head[N];
int cnt=-1;
queue<int> q;
void add(int from,int to,int cap)
{
    cnt++;
    p[cnt].to=to;
    p[cnt].cap=cap;
    p[cnt].next=head[from];
    head[from]=cnt;
}

bool bfs(int s,int t)//分层,可以当做求树的深度理解
{
    q=queue<int>();
    memset(dis,-1,sizeof(dis));
    dis[s]=0;
    q.push(s);
    while(!q.empty())
    {
        int x=q.front();
        q.pop();
        for(int i=head[x]; i!=-1; i=p[i].next)
        {
            int now=p[i].to;
            if(dis[now]==-1&&p[i].cap!=0)
            {
                dis[now]=dis[x]+1;
                q.push(now);
            }
        }
    }
    return dis[t]!=-1;
}
int dfs(int x,int t,int maxflow)//maxflow表示流入当前点的流量
{
    if(x==t)return maxflow;
    int ans=0;
    for(int i=head[x]; i!=-1; i=p[i].next)
    {
        int now=p[i].to;
        if(dis[now]!=dis[x]+1||p[i].cap==0||ans==maxflow) continue;
        int f=dfs(now,t,min(p[i].cap,maxflow-ans));//每次dfs的第三个变量都是在当前这个点的可以流出的量(此量每次到for循环的下一层循环的时候都会变小或者不变)和当前流出边的cap取最小值。
        p[i].cap-=f;
        p[i^1].cap+=f;
        ans+=f;
    }
    return ans;//如此递归下去
}
int dinic(int s,int t)
{
    int ans=0;
    while(bfs(s,t))//如果还有增广路就dfs
    {
        ans+=dfs(s,t,9999999999);
    }
    return ans;
}
//加边加边加边。。。。。。
cout<<dinic(s,t);

时隔多日
dinic当前弧优化版本

struct node
{
    int to,cap,next;
} p[N*10];
int dis[N];
int head[N];
int cnt=-1;
queue<int> q;
int cur[N];
void add(int from,int to,int cap)
{
    cnt++;
    p[cnt].to=to;
    p[cnt].cap=cap;
    p[cnt].next=head[from];
    head[from]=cnt;
}

bool bfs(int s,int t)//分层,可以当做求树的深度理解
{
    q=queue<int>();
    memset(dis,-1,sizeof(dis));
    dis[s]=0;
    q.push(s);
    cur[s]=head[s];
    while(!q.empty())
    {
        int x=q.front();
        q.pop();
        if(x==t)return 1;
        cur[x]=head[x];
        for(int i=head[x]; i!=-1; i=p[i].next)
        {
            int now=p[i].to;
            if(dis[now]==-1&&p[i].cap!=0)
            {
                dis[now]=dis[x]+1;
                q.push(now);
                cur[now]=head[now];
            }
        }
    }
    return dis[t]!=-1;
}
int dfs(int x,int t,int maxflow)//maxflow表示流入当前点的流量
{
    if(x==t)return maxflow;
    int ans=0;
    for(int i=cur[x]; i!=-1; i=p[i].next)
    {
        cur[x]=i;
        int now=p[i].to;
        if(dis[now]!=dis[x]+1||p[i].cap==0||ans==maxflow) continue;
        int f=dfs(now,t,min(p[i].cap,maxflow-ans));//每次dfs的第三个变量都是在当前这个点的可以流出的量(此量每次到for循环的下一层循环的时候都会变小或者不变)和当前流出边的cap取最小值。
        p[i].cap-=f;
        p[i^1].cap+=f;
        ans+=f;
        if(ans==maxflow)
            return ans;
    }
    return ans;//如此递归下去
}
int dinic(int s,int t)
{
    int ans=0;
    while(bfs(s,t))//如果还有增广路就dfs
    {
        ans+=dfs(s,t,9999999999);
    }
    return ans;
}
int main()
{
    int n,m;
    cin>>n>>m;
    int x,y,c;
    memset(head,-1,sizeof head);
    while(m--)
    {
        cin>>x>>y>>c;
        add(x,y,c);
        add(y,x,0);
    }
    cout<<dinic(1,n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值