python实现Anderson-Darling正态分布检验

本文介绍了如何使用Python实现Anderson-Darling正态性检验,这是一种用于检查样本是否源自非正态分布总体的统计方法。检验通过比较样本的累积分布函数与正态分布的期望分布来评估差异,尤其对尾部分布敏感。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python实现Anderson-Darling正态分布检验

 

正态性检验

确定您绘制样本所基于的总体是否呈非正态分布的单样本假设检验。许多统计过程均依赖于总体正态性,且使用正态性检验确定否定此假设是不是分析中的重要步骤。正态性检验的原假设假定总体为正态分布。备择假设假定总体为非正态分布。要确定样本数据是否来自非正态总体,您可以从四种检验中进行选择。

测试数据样本是否具有高斯分布。

假设条件

  • 每个样本中的观察结果都是独立且均等分布的(iid)。

解释

  • H0:样本具有高斯分布。
  • H1:样本没有高斯分布。

# Example of the Anderson-Darling Normality Test
from scipy.stats import anderson
data = [0.873, 2.817, 0.121, -0.945, -0.055, -1.436, 0.360, -1.478, -1.637, -1.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值