在Python中计算一次性计算多个百分位数percentile、quantile

本文介绍了如何在Python中一次性计算多个数据的百分位数,包括使用numpy.percentile()函数处理数组,以及对DataFrame列的百分位数进行计算,详细展示了计算单个列和多个列的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Python中计算一次性计算多个百分位数percentile、

quantile

目录

在Python中计算一次性计算多个百分位数percentile、

quantile

找到数组的百分位数percentile

DataFrame列的百分位数

查找多个DataFrame列的百分位数


数据集的第n个百分位数是当所有值从最小到最大排序时,将前n%的数据值剪掉的值。

例如,数据集的第90百分位数是从前10%的数据值中削减后90%的数据值的值。

我们可以使用numpy.percentile()函数快速计算Python中的百分位数,该函数使用以下语法:

numpy.percentile(a, q)

  • a: 数据列表中的值;
  • q: 序列中的分位数参数(0到100之间的整数);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值