Problem B: 二叉树遍历2

Problem Description

二叉树的前序、中序、后序遍历的定义:
前序遍历:对任一子树,先访问跟,然后遍历其左子树,最后遍历其右子树;
中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树;
后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
给定一棵二叉树的前序遍历和中序遍历,求其后序遍历(提示:给定前序遍历与中序遍历能够唯一确定后序遍历)

Input Description

两个字符串,其长度n均小于等于26。
第一行为前序遍历,第二行为中序遍历。
二叉树中的结点名称以大写字母表示:A,B,C....最多26个结点。

Output Description

输入样例可能有多组,对于每组测试样例,
输出一行,为后序遍历的字符串。

Sample Input
ABC
CBA
ABCDEFG
DCBAEFG
Sample Output
CBA
DCBGFEA
#include<iostream>
#include<cstdlib>
#include<cstring> 
#include<cstdio>
using namespace std;
 
#define Max 27  //  串的最大长度 
char qianxu[Max];
char zhonxu[Max];
char houxu[Max];

struct node 
{
	char ch;
	struct node *lc;
	struct node *rc;
};

 
node* hou(int b1, int e1, int b2, int e2)  
{
	node* newNode = (node *)malloc(sizeof(node));
	newNode->lc = newNode->rc = NULL;
	newNode->ch = qianxu[b1];
	int ri = -1;
	for(int i = b2 ; i <= e2 ; i++ )
	{
		if(qianxu[b1] == zhonxu[i])
		{
			ri = i;
			break;
		}
	}
	
	if(ri != b2)
	{
		newNode->lc = hou(b1 + 1, b1 + (ri - b2), b2, ri - 1);
	} 
	if(ri != e2) 
	{
		newNode->rc = hou(b1 + (ri - b2) + 1, e1, ri + 1, e2);
	} 
	return newNode;
} 


node* qian(int b1, int e1, int b2, int e2)  
{
	node* newNode = (node *)malloc(sizeof(node));
	newNode->lc = newNode->rc = NULL;
	newNode->ch = qianxu[e2];
	int ri = 0;
	for(int i = b1 ; i <= e1 ; i++ )
	{
		if(houxu[i] == zhonxu[i])
		{
			ri = i;
			break;
		}
	}
	
	if(ri != b1) 
	{
		newNode->lc = qian(b1, ri - 1, b2, b2 + (ri - b1) - 1);
	} 
	if(ri != e1) 
	{
		newNode->rc = qian(ri + 1, e1, b2 + (ri - b1) , e2 - 1);
	} 
	return newNode;
} 

void qian_show(node *p) 
{
	if(p)
	{
		printf("%c",p->ch);
		qian_show(p->lc);
		qian_show(p->rc);
	}
 } 
 
 void zhon_show(node *p)
 {
 	if(p)
 	{
 		zhon_show(p->lc);
 		printf("%c",p->ch);
 		zhon_show(p->rc);
	}
 }
 
 void hou_show(node *p)  
 {
 	if(p)
 	{
 		hou_show(p->lc);
 		hou_show(p->rc);
 		printf("%c",p->ch);
	}
 }
 
 int main()
 {
 	while(cin>>qianxu)
 	{
 		cin>>zhonxu;
 		node* r = NULL;
		r = hou(0, strlen(qianxu)-1, 0, strlen(zhonxu)-1);
 		hou_show(r);
 		printf("\n");
	}
	return 0;
 }

Hint

提示:
表示字符串的数据结构依然是字符数组。
总结:
KMP算法调用很简单,但难的是理解算法的思想。掌握算法的思想才能说是掌握算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值