Problem Description
如上所示,由正整数1,2,3……组成了一颗特殊二叉树。我们已知这个二叉树的最后一个结点是n。现在的问题是,结点m所在的子树中一共包括多少个结点。
比如,n = 12,m = 3那么上图中的结点13,14,15以及后面的结点都是不存在的,结点m所在子树中包括的结点有3,6,7,12,因此结点m的所在子树中共有4个结点。
Input Description
输入数据包括多行,每行给出一组测试数据,包括两个整数m,n (1 <= m <= n <= 1000000000)。最后一组测试数据中包括两个0,表示输入的结束,这组数据不用处理。
Output Description
对于每一组测试数据,输出一行,该行包含一个整数,给出结点m所在子树中包括的结点的数目。
Sample Input
3 7 142 6574 2 754 0 0
Sample Output
3 63 498
Hint
#include<stdio.h>
int main()
{
int m, n;
int sum,left,right;
while(scanf("%d %d",&m,&n) != EOF)
{
sum = 0;
if(0 == m && 0 == n)
{
break;
}
if(m == n)
{
sum = 1;
}
else if(m < n)
{
sum = 1;
left = 2 * m;
right = 2 * m + 1;
while(n > right) // 判断是否在下下层
{
sum += right - left + 1;
left = 2 * left;
right = 2 * right + 1;
}
if(n >= left)
{
sum += n - left + 1;
}
}
printf("%d\n",sum);
}
return 0;
}
提示:
总结: