Problem C: 二叉树 , 如上所示,由正整数1,2,3……组成了一颗特殊二叉树。我们已知这个二叉树的最后一个结点是n。现在的问题是,结点m所在的子树中一共包括多少个结点。

本文介绍了一种算法,用于解决特殊二叉树结构中指定节点m的子树内节点数量计算问题。通过递归方式遍历并计算节点数量,适用于节点总数不超过十亿的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

如上所示,由正整数1,2,3……组成了一颗特殊二叉树。我们已知这个二叉树的最后一个结点是n。现在的问题是,结点m所在的子树中一共包括多少个结点。

    比如,n = 12,m = 3那么上图中的结点13,14,15以及后面的结点都是不存在的,结点m所在子树中包括的结点有3,6,7,12,因此结点m的所在子树中共有4个结点。

Input Description

输入数据包括多行,每行给出一组测试数据,包括两个整数m,n (1 <= m <= n <= 1000000000)。最后一组测试数据中包括两个0,表示输入的结束,这组数据不用处理。

Output Description

 对于每一组测试数据,输出一行,该行包含一个整数,给出结点m所在子树中包括的结点的数目。

Sample Input
3 7
142 6574
2 754
0 0
Sample Output
3
63
498
Hint
   #include<stdio.h>

int main()
{
	int m, n;
	int sum,left,right;
	while(scanf("%d %d",&m,&n) != EOF)
	{
		sum = 0;
		if(0 == m && 0 == n)
		{
			break;
		}
		if(m == n)
		{
			sum = 1;
		}
		else if(m < n)
		{
			sum = 1;
			left = 2 * m;
			right = 2 * m + 1;
			while(n > right)  // 判断是否在下下层 
			{
				sum += right - left + 1;
				left = 2 * left;
				right = 2 * right + 1;
			}
			if(n >= left)
			{
				sum += n - left + 1;
			}
		}
		printf("%d\n",sum);
	}
	return 0;
}

提示:
 

总结:
 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值