卷积层和池化层中padding参数“SAME”和“VALID”的区别

本文详细解析了卷积神经网络中padding参数的作用,包括'SAME'和'VALID'两种模式下输出尺寸的计算公式,帮助理解图像边缘补零在卷积和池化操作中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      padding参数的作用是决定在进行卷积或池化操作时,是否对输入的图像矩阵边缘补0,‘SAME’ 为补零,‘VALID’ 则不补,因为在这些操作过程中过滤器可能不能将某个方向上的数据刚好处理完。

  • VALID 模式
											     |dropped
inputs:         1  2  3  4  5  6  7  8  9  10 11 (12 13)
                |______________|                
                               |_______________|

      对于VALID方法,输出的大小计算如下:

out_width = out_height = ⌈ (s_input – s_filter + 1)/ s_stride ⌉

      其中,s_input 为输入的大小,s_filter 为filter的大小,s_stride 为步长,⌈⌉为向上取整。

  • SAME 模式
                                                    |pading
inputs:      1  2  3  4  5  6  7  8  9  10 11 12 13 |0   0   0
           	 |______________|
                            |______________|
                                           |_________________|

      对于SAME,输出的大小计算如下:

out_width = out_height = ⌈ s_input / s_stride ⌉

      其中,s_input 为输入的大小,s_stride 为步长,⌈⌉为向上取整


参考:https://www.cnblogs.com/White-xzx/p/9497029.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南洲.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值