Newton-Raphson Method

本文介绍了牛顿-拉夫逊方法(Newton-Raphson Method),一种用于近似求解方程根的迭代技术。通过泰勒级数展开和迭代公式,阐述了该方法的基本原理和求解过程。此外,还讨论了方法在求商问题上的应用,并展示了快速求解1/d的实例,揭示了牛顿法在硬件常见运算中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、Newton-Rahpson原理

二、Newton-Raphson方法求商


一、Newton-Rahpson原理

Newton-Raphson Method称牛顿-拉夫逊方法,又称牛顿迭代法。

牛顿-拉夫逊方法是一种近似求解方程的根的方法。

该方法使用函数f(x)的泰勒级数的前2项求解f(x)=0的根。

将f(x)函数再点x0的某邻域内展开成n阶泰勒公式如下:

其中Rn(x)为n阶泰勒余项。

令f(x)=0,取泰勒多项式的前2项作为近似,也就是1阶泰勒多项式;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值