自动驾驶(六十四)---------匈牙利匹配

     最近发现要写的东西很多,在轨迹规划中还有一大堆的新概念,但是要花大力气才能理解皮毛,所以调节一下,学点相对比较简单的概念,匈牙利匹配!

1. 匈牙利匹配

     匈牙利匹配最早是在图论中出现的,至于如何在自动驾驶中得到应用,我们一点点展开:

     我们的时代经过几代人不懈努力,房价终于赶英超美,也带来了剩男剩女大潮,假设你是媒人,手上有N个剩男、M个剩女,中间有很多相互有不同程度的好感,屌丝的单相思不考虑啊,要互相有好感才行。那么你打算如何撮合他们呢?首先要求尽可能的多,并且最终总的满意度最高。匈牙利匹配步骤如下:

     1. 先试着给1号男生找妹子,发现和他相互有好感的1号女生还名花无主,nice!,连上一条线。

     2. 接着给2号男生找妹子,发现和他相互有好感的2号女生名花无主,nice!,连上一条线。

     3. 接下来是3号男生,很遗憾和他相互有好感的1号女生已经有主了,怎么办呢?我们试着拆散1号男和一号女,让一号男重新找,把3号男和一号女连在一起,如果1号男能找到其他的女生,那不就多成就了一对吗?散花....

     4. 接下来是4号男生,通过上面腾挪的方法,发现4号男生的加入,不管如何腾挪,都不能多成就一对,那我们只能放弃4号同学了。

     5. 特别的这个中间有几个问题,每一次腾挪我们都要考虑一个总的受益,每个男女都相互有不同程度的好感,和好感度高的在一起相对更满意,但是如果最终没有配对成功,满意度才是最低的,所以每一次腾挪都需要比较两次的最终总的满意度。

2. 自动驾驶结合

     在自动驾驶中,不同传感器每一个周期返回不同的目标,相互之间如何匹配呢,对于同一个传感器而言,一般都有不同目标对应的ID,但是在夸传感器之间就没有这么幸运的事,另外融合了所有传感器的目标之后我们自己的输出,也需要目标和目标之间的配准,这中间都可以应用匈牙利匹配的方法实现。

     之前的文章中有介绍多目标的融合方法:传感器数据融合,当时只是把融合的方法进行分类,并没有介绍一种行之有效的操作手册,那这里我来阐述一下我的一个思路:

  1. 我们有一个目标模型:,其中 u 和 v 分别代表目标中心的水平和垂直像素位置,而 s 和 r 分别代表目标边界框的比例(面积)和纵横比,这里是和一个固定尺度进行比较,一般选最大的区间,使得归一化到统一的模型中。后面的是通过kalman滤波进行跟踪之后的结果。
  2. 采用匈牙利匹配对这些目标进行匹配,这中间不同目标之间的好感度,我们采用预测边界框之间的交并比(IoU)来计算,当然我们也不会一位的进行配对,需要设计最小交并比(IoU),也就是说交并比太小我们没有必要强行匹配。
  3. 文章发现边界框的 IoU 距离隐式处理由目标经过引起的短时遮挡。具体地说,当遮挡物盖过目标时,只检测到遮挡物。尽管隐藏目标离检测框中心更近,但 IoU 距离更倾向于具有相似比例的检测。这使得可以在不影响覆盖目标的情况下,通过检测对遮挡目标进行校正。
  4. 当目标进入和离开图像时,需要相应地创建或销毁唯一标识。对于创建跟踪程序,文中认为任何重叠小于 IoUmin 的检测都表示存在未跟踪的目标。使用速度设置为零的边界框信息初始化跟踪器。由于此时无法观测到速度,因此速度分量的协方差用较大的值初始化,反映出这种不确定性。此外,新的跟踪器将经历一个试用期,其中目标需要与检测相关联以积累足够的证据以防止误报的跟踪。
  5. 最后的最后,我们对于一个对象的建立和销毁,需要加入延时判断,这样才不会让我们的目标来回跳动,增加目标融合的稳定性。

3. 升华

      最近奇葩说看得有点多,讲完我的故事还需要价值升华!朋友们2019年是自动驾驶的寒冬,那又怎样,宝剑锋从磨砺出,梅花香自苦寒来。越是遇到这样的窘况,越能体现我们坚守的可贵,这是一个不缺梦想的时代,缺的是你为梦想所付出的行动。

 

<think>好的,我现在需要处理用户关于可变形变换器(Deformable Transformers)在端到端目标检测中的应用的问题。首先,我应该回顾一下已有的知识,确保自己理解Deformable Transformers的基本概念和它们在目标检测中的作用。 Deformable Transformers结合了可变形卷积和Transformer的优点,主要解决传统Transformer在处理高分辨率图像时计算量过大的问题。传统Transformer的自注意力机制在图像处理中需要处理大量的像素点,导致计算复杂度很高。而可变形注意力通过采样关键点,减少计算量,同时保持对物体形变的适应能力。这在目标检测中尤为重要,因为目标的位置和形状可能变化很大。 接下来,用户询问的是端到端目标检测的实现和使用。端到端检测意味着不需要后处理步骤(如非极大值抑制,NMS),直接输出检测结果。DETR(Detection Transformer)是首个实现这一点的模型,但它存在收敛速度慢和对小物体检测效果差的问题。Deformable DETR通过引入可变形注意力机制,改进了这些问题,提高了训练效率和检测精度。 现在需要详细说明实现步骤。首先,数据准备部分,用户可能需要了解数据集的处理,比如使用COCO格式,并进行数据增强。然后是模型架构,包括CNN骨干网络提取特征,可变形注意力层处理特征,以及Transformer的编解码结构。在训练策略方面,学习率设置、损失函数的选择(如匈牙利算法匹配预测和真实框)是关键点。最后,推理阶段需要说明如何处理输出,生成最终的检测框。 在代码示例部分,我需要提供一个简化的实现,可能基于PyTorch和Deformable DETR的库。这里要注意引入必要的模块,如DeformableDetrTransformer,并展示模型初始化和前向传播的过程。同时,需要提到需要安装特定的库,如torch和deformable-detr。 优化技巧部分,用户可能关心如何提升模型性能。多尺度特征融合可以捕捉不同尺度的目标,尤其是小物体。调整采样点的数量和加入迭代优化机制(如两阶段可变形注意力)也是有效的方法。此外,知识蒸馏可以用于提升小模型的性能。 应用场景方面,自动驾驶、医学图像分析和工业检测都是Deformable Transformers的典型应用,需要简要说明其优势,比如处理复杂背景或高分辨率图像的能力。 最后,生成相关问题时,要考虑用户可能进一步想知道的内容,比如与传统DETR的区别、处理小物体的方法、部署到移动设备的可能性,以及训练中的常见问题和解决方案。这些问题可以帮助用户更全面地理解主题,并深入探索实际应用中的挑战。</think>### 可变形变换器(Deformable Transformers)在端到端目标检测中的应用 #### 1. 核心概念 可变形变换器结合了可变形卷积的灵活性和Transformer的全局建模能力,通过**可变形注意力机制**动态调整特征采样位置,显著降低了传统Transformer在图像处理中的计算复杂度[^1]。其核心公式为: $$ \text{DeformAttn}(z_q, x) = \sum_{k=1}^K W_k \cdot x(p_q + \Delta p_{qk}) $$ 其中$z_q$是查询特征,$\Delta p_{qk}$为可学习的偏移量,$K$为采样点数。 #### 2. 端到端实现关键步骤 1. **数据准备** - 使用COCO格式标注数据 - 增强策略:随机裁剪、颜色抖动、多尺度训练 - 特征金字塔构建(FPN)处理多尺度目标 2. **模型架构** ```python from deformable_detr import DeformableDetrTransformer model = DeformableDetrTransformer( backbone='resnet50', num_classes=80, num_queries=300, num_feature_levels=4 ) ``` 3. **训练策略** - 两阶段训练:先用CNN提取特征,再联合优化Transformer - 匈牙利匹配损失:$\mathcal{L} = \lambda_{cls}\mathcal{L}_{cls} + \lambda_{box}\mathcal{L}_{box} + \lambda_{giou}\mathcal{L}_{giou}$ - 学习率策略:初始学习率$1e^{-4}$,100 epoch后衰减10倍 #### 3. 优化技巧 - **多尺度特征融合**:在FPN的P3-P6层级部署可变形注意力 - **动态采样点分配**:根据目标尺寸自动调整采样点密度 - **迭代边界框优化**:通过3次回归逐步细化预测框 #### 4. 典型应用场景 1. **自动驾驶感知**:处理复杂街景中遮挡目标 2. **医学图像分析**:检测微小病灶(如肺结节) 3. **工业质检**:高分辨率产品缺陷定位 #### 5. 性能对比 | 指标 | DETR | Deformable DETR | |--------------|--------|-----------------| | 训练收敛速度 | 500ep | 50ep | | [email protected] | 42.0% | 46.5% | | 显存消耗 | 32GB | 18GB |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值