【人工智能】真实分享:链式思维与思维树是如何提升智能模型的!

💥 欢迎来到我的博客!很高兴能在这里与您相遇!希望您能在这个轻松愉快的环境中,发现有趣的内容和丰富的知识。同时,期待您分享自己的观点和见解,让我们一起开启精彩的交流旅程!🌟
请添加图片描述

你是否好奇,AI是如何一步步“思考”并解决复杂问题的?今天,我们将深入探讨**链式思维(Chain-of-Thought, CoT)思维树(Tree of Thought, ToT)**这两种前沿技术,它们如何为AI赋予更强的推理能力,并推动智能模型迈向新的高度。🚀

请添加图片描述

什么是链式思维(CoT)?

链式思维(CoT)是一种引导大型AI模型像人类一样,按照逻辑顺序逐步思考并解决问题的方法。通过生成中间推理步骤,CoT不仅提升了模型的回答准确率,还显著减少了“幻觉”现象(即AI生成不准确或虚假的信息)。CoT主要分为两种应用方式:

  1. 少量示例的CoT(Few-Shot CoT):通过提供少量的链式思维示例,帮助模型理解和应用推理过程。
  2. 零示例的CoT(Zero-Shot CoT):无需示例,直接通过提示词引导模型进行逐步推理。

在这里插入图片描述

思维树(ToT)— CoT的进阶版

思维树(ToT)是对链式思维的进一步扩展。相比于CoT单一路径的线性推理,ToT通过构建思维树,提供多种解决方案,帮助分析和解决更为复杂的问题。ToT不仅能够生成多条思维路径,还能评估和排名这些解决方案,从而提升决策的全面性和准确性。

链式思维的实际效果

提升回答质量,减少错误

通过引导AI按照逻辑步骤思考,链式思维显著提升了模型的回答正确率。尤其是在模型参数超过20亿的情况下,CoT展现出了强大的效果。以GPT-3(1750亿参数)和GPT-3.5为例,这些模型在应用CoT后表现尤为出色。

图解:链式思维的工作原理

在这里插入图片描述

备注:GPT-3的参数数量是175b,3.5版本则更多。

如何实现链式思维

实现链式思维的关键在于优化提示词,将用户的问题拆解成多个步骤,引导AI按顺序逐步执行。具体分为以下几步:

1. 少量示例的CoT(Few-Shot CoT)

通过提供具体的思考步骤和示例,帮助AI理解如何进行链式推理。例如:

示例 1:

人类:我想找一种象征爱情的水果。
AI:象征爱情的水果之一是草莓。草莓以其鲜艳的红色和心形外观,成为爱情的象征,通常与浪漫和情感联系在一起。因此,考虑到这一点,我会推荐草莓。

示例 2:

人类:我想要一些独特和奇特的水果。
AI:从你的需求中,一种独特和奇特的水果是“火龙果”。这种水果以其独特的外观和口感而闻名,通常具有明亮的粉红色皮肤和点缀着黑色种子的白色或红色果肉。因此,我建议你考虑火龙果。

2. 零示例的CoT(Zero-Shot CoT)

只需在提示中增加一句话,引导AI进行逐步思考。例如:

让我们一步步地思考(Let's think step by step)

思维树的实现方式

思维树(ToT)的实现主要有两种方式:

1. 通用版实现(如Langchain)

这种方式通过多步链式操作,生成、评估、分析并最终排名解决方案。以下是一个基于Langchain的ToT实现示例:

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI

template ="""
Step1 :
 
I have a problem related to {input}. Could you brainstorm three distinct solutions? Please consider a variety of factors such as {perfect_factors}
A:
"""

prompt = PromptTemplate(
    input_variables=["input","perfect_factors"],
    template = template                      
)

chain1 = LLMChain(
    llm=ChatOpenAI(temperature=0, model="gpt-4o-mini"),
    prompt=prompt,
    output_key="solutions"
)

# 省略中间步骤...

overall_chain = SequentialChain(
    chains=[chain1, chain2, chain3, chain4],
    input_variables=["input", "perfect_factors"],
    output_variables=["ranked_solutions"],
    verbose=True
)

print(overall_chain({"input":"human colonization of Mars", "perfect_factors":"The distance between Earth and Mars is very large, making regular resupply difficult"}))

2. 提示词版实现

另一种方式是提供详细的示例,指导AI按照思维树的方式进行分析和解决问题。这种方法速度快、成本低、且灵活性高,适用于不同类型的问题。

实操示例

假设我们要分析“人类殖民火星”的可行性,ToT框架会生成多个解决方案,并对其进行评估和排名。最终,AI可能会输出以下内容:

{
  "ranked_solutions": [
    {
      "rank": 1,
      "title": "闭合生态生命支持系统(CELSS)",
      "evaluation": "CELSS 被认为是最有前途的解决方案,因为它直接解决了火星殖民过程中的基本生存需求,包括食物和空气的自给自足。",
      "pros": [
        "潜力大:能够在本地生产食品和氧气,减少对地球补给的依赖,是长期生存的关键。",
        "创新性:与农业生物技术公司合作,能加速开发适合火星条件的作物品种。"
      ],
      "final_thought": "尽管面临生态崩溃和心理健康挑战的风险,采用灵活的补救措施可以增强系统的韧性。"
    },
    {
      "rank": 2,
      "title": "模块化栖息地设计与3D打印",
      "evaluation": "模块化栖息地设计和3D打印技术的整合提供了快速适应与扩展的可能性。",
      "pros": [
        "精确性与扩展性:能够迅速建立适宜的居住环境并根据需要进行扩展。",
        "资源利用:强调在火星原材料的现场使用(ISRU),有助于减少运输成本。"
      ],
      "final_thought": "虽然存在设备故障和环境挑战的隐忧,适应性的设计能帮助应对火星的极端条件。"
    }
  ],
  "overall_conclusion": "闭合生态生命支持系统在生存需求的自给自足上具备最高的潜力,适合长期的人类火星殖民。模块化栖息地设计为栖息环境的快速适应提供了可能。通过有效的规划和合作,各种解决方案的结合使用,能够促进火星殖民的成功实施。"
}

总结

链式思维(CoT)和思维树(ToT)通过系统化的思考步骤和多路径分析,不仅提升了AI的回答准确率和可靠性,还为解决复杂问题提供了新的思路。

💥 更多精彩文章:期待与您一起共同成长。✨加入我们的旅程,共同发现更多精彩!🌟🌟
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XinZong-千鑫

在线乞讨,行行好吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值