InstructABSA基于指示学习的情感分析方法

文章介绍了指示学习在ABSA任务中的应用,通过添加指令优化模型,减少了参数量但保持了高性能。在ATE和ATSC任务上表现出色,尤其在联合任务中取得提升,跨域评估揭示了其泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章还没有正式发出,只是罗列了大概内容。文章主要应用指示学习的思想,首先介绍下指示学习。指示学习是谷歌Deepmind的Quoc V.Le团队在2021年的一篇名为《Finetuned Language Models Are Zero-Shot Learners》文章中提出的思想。指示学习的目的是去挖掘语言模型本身具备的知识。Instruct是激发语言模型的理解能力,它通过给出更明显的指令,让模型去做出正确的行动。指示学习的优点是它经过多任务的微调后,也能够在其他任务上做zero-shot。

论文题目(Title):InstructABSA: Instruction Learning for Aspect Based Sentiment Analysis

研究问题(Question):ATE方面术语提取,ATSC方面术语情感分类,Joint Task联合任务

 

主要贡献(Contribution):

1. 引入了指示性学习。

2. 参数量200M,相比于其他效果相当的模型参数量有了数量级的减少。

3. 评估性能时用了跨域评估,即用一个数据集进行训练,另一个不同的数据集进行测试,证明了跨域评估具有局限性。

研究思路(Idea):通过给训练样本添加指示性的指令,让模型做出正确的判断。

研究方法(Method):为每个训练样本引入了积极的、消极的和中性的例子,并为每个ABSA子任务指导调整模型(tk - instruction Base),产生了显著的性能改进。

研究过程(Process):

        1.数据集(Dataset):​​​​​​​Sem Eval 2014 dataset

        2.评估指标(Evaluation):F1,accuracy

        3.实验结果(Result):

​​​​​​​​​​​​​​ATE:F1 laptops 4.37%
             restaurants 7.31%
ATSC:acc laptops 2.16%
          restaurants -0.57%
JT:F1 laptops 8.63%
             restaurants 1.4%

​​​​​​​​​​​​​​ 

​​​​​​​ 

总结(Conclusion):大部分结果时优于其他的,只有一个略低,证明了指示学习的有效性。可以考虑应用,还有提示学习,后续可以参考使用。文中实验结果表明,Instruct1,Instruct2带来的结果有正向有反向,两者结合提升了总体效果,其中解释还未给出。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值