(2022 EMNLP)(SEMGraph)将情感知识和眼动结合到一个图架构中

论文提出了SEMGraph模型,结合情感知识和眼动数据来提升情感分析的性能。通过语言探测眼动范式提取特征,并利用情感-眼动权重建立情感关系图。实验显示,在有无眼动信号的数据集上,SEMGraph均表现优越,证明了其有效性和泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目(Title):SEMGraph: Incorporating Sentiment Knowledge and Eye Movement into Graph Model for Sentiment Analysis

研究问题(Question):基于眼动的情感分析,旨在绘制基于眼动的情感关系,以学习语境中的情感表达。

研究动机(Motivation):眼动信息和脑电波信息最能直观的反应人们情绪变化

主要贡献(Contribution):

1.通过引入情感-眼动权值来改进情感信息的学习,从一个全新的角度来处理SA任务。

2.基于语言特征与人类阅读的早期和后期过程之间的密切关系,提出了一种有效的眼动特征提取范式——语言探测眼动范式。

3.探索了一种新的情感-眼动引导图(SEMGraph)模型来绘制基于眼动的情感关系。

4.基于眼动信号的情感分析数据集和三个没有眼动信号的情感分析数据集,证明了所提出的方法SEMGraph在SA中达到了最先进的性能,同时可以推广到没有眼动信号的情感分析数据集。

研究思路(Idea):首先,基于语言特征与人类阅读行为的早期和晚期过程之间的密切关系,我们探索了一种语言探测眼动范式来提取眼动特征;为了获得带有情感概念的眼动特征,设计一种新的加权策略,将情感常识知识提取的情感分数整合到眼动特征中,称为情感-眼动权重。然后,利用情感眼动权值构建情感眼动引导图(SEMGraph)模型,对情境中复杂的情感关系进行建模。

研究方法(Method):

研究过程(Process):

        1.数据集(Dataset)

        2.评估指标(Evaluation):Accuracy

        3.实验结果(Result)

总结(Conclusion):在2个含眼动信号的眼动情感分析数据集和3个不含眼动信号的眼动情感分析数据集上的实验结果表明了该方法的有效性和良好的泛型性。

这项工作提出了一种基于现有眼动数据的范式,而不是使用眼动仪在线捕获人类眼动数据。因此,利用眼动仪进行在线情感分析是未来工作的一个方向。其次,主要关注眼动数据中最多的(首次注视时间)FFD和(总阅读时间)TRT。如果能引入更多有用的眼动数据,更深入地研究眼动与情绪的关系,那就更好了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值