自然语言处理之文本分类:决策树剪枝技术

自然语言处理之文本分类:决策树剪枝技术

在这里插入图片描述

决策树基础

决策树的构建过程

决策树是一种监督学习算法,用于分类和回归任务。构建决策树的过程主要包括特征选择、树的生成和树的剪枝。特征选择是决策树构建的第一步,它决定了树的结构和分类能力。信息增益和信息增益比是两种常用的特征选择方法。

信息增益与信息增益比

信息增益(Information Gain)是基于信息论中的熵概念,用来衡量一个特征对数据集分类的贡献度。熵是衡量数据集纯度的指标,熵越小,数据集的纯度越高。信息增益计算公式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值