自然语言处理之文本分类:决策树剪枝技术 决策树基础 决策树的构建过程 决策树是一种监督学习算法,用于分类和回归任务。构建决策树的过程主要包括特征选择、树的生成和树的剪枝。特征选择是决策树构建的第一步,它决定了树的结构和分类能力。信息增益和信息增益比是两种常用的特征选择方法。 信息增益与信息增益比 信息增益(Information Gain)是基于信息论中的熵概念,用来衡量一个特征对数据集分类的贡献度。熵是衡量数据集纯度的指标,熵越小,数据集的纯度越高。信息增益计算公式如下: