约数个数与约数和(质因素分解)

本文介绍了一种通过将自然数分解为质因数的方法来计算其约数个数及约数和的技术。以72为例,详细展示了如何找到所有约数并计算它们的总和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

求一个自然数N的约数个数与约数和,先把这个自然数分解质因数,表示为:

N﹦P1a1·P2a2·P3a3……PKak

N的约数的个数为:(a1+1)×(a2+1)×……×(ak+1);

N的约数和为:(1+P1+ P12+…+ P1a1)×(1+P2+ P22+…+ P2a2)×……×(1+PK+PK2+…+PKak)。

例如:72﹦23×32

先找出23的所有(3+1﹦)4个约数:1、2、22、23

再找出32的所有(2+1﹦)3个约数:1、3、32

用23的每一个约数依次去乘以32的每一个约数,可以求出72的所有[(3+1)×(2+1)﹦]12个约数:

1、3、32、2×1、2×3、2×32、22×1、22×3、22×32、23×1、23×3、23×32

约数和为:

(1+2+22+23)×(1+3+32)﹦195。

 

注:这些质因素中包括了1和自然数N本身。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值