tensorflow结果可视化

该篇博客展示了如何在TensorFlow中实现结果的实时可视化。通过构建一个简单的神经网络模型,作者使用matplotlib进行交互式绘图,动态展示训练过程中的损失变化及预测输出,使读者能够直观理解模型的训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#!/usr/bin/env python
# _*_ coding: utf-8 _*_
# @Time     : 2018/6/2 14:52
# @Author   : zand
# @File     : Tensorflow结果可视化 

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def add_layer(imputs, in_size, out_size, activation_function = None):
	Weights = tf.Variable(tf.random_normal([in_size, out_size]))
	biases = tf.Variable(tf.zeros([1,out_size]) + 0.1)
	Wx_plus_b = tf.matmul(imputs,Weights) + biases

	if activation_function is None:
		outputs = Wx_plus_b
	else:
		outputs = activation_function(Wx_plus_b)
	return outputs

x_data = np.float32(np.linspace(-1,1,300)[:,np.newaxis])  #构造输入数据x_data,-1到1区间,300个单位。np.newaxis新建一个维度。
noise = np.float32(np.random.normal(0,0.05,x_data.shape))  #构造噪声,使得不完全按照一元二次函数构造
y_data = np.square(x_data)-0.5 + noise

l1 = add_layer(x_data,1,10,activation_function=tf.nn.relu) #输入层到隐藏层,隐藏层设置10个神经元,激活函数设置为tf.nn.relu。
prediction = add_layer(l1,10,1,activation_function=None)  #隐藏层到输出层,激活函数设置为线性函数。

los
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值