一、堆排序概述
1.1 什么是堆
堆(heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做为一棵树的数组对象。
堆总是满足以下性质:
- 堆中的父节点的值总是小于(或者大于)它的子节点的值;
- 堆是一颗完全的二叉树。
根据父节点与子节点的大小关系,堆又可以分为最大堆和最小堆。
其中最大堆的父节点的值总是大于它的子节点的值;最小堆的父节点的值总是小于它的子节点的值。
![]() 图一 最大堆 |
![]() 图二 最小堆 |
对堆中的结点按层进行编号,以最大堆为例,映射到数组中就是下面这样:
通过最大堆的特点,结合最大堆的数组,可以用数学表达式来表述最大堆的特点:arr[i] >= arr[2*i+1] && arr[i] >= arr[2*i+2]
,其中 i 对应第几个节点,从 0 开始编号。
同理,最小堆的特点使用数组来表述就是:arr[i] <= arr[2*i+1] && arr[i] <= arr[2*i+2]
。
1.2 什么是堆排序
堆排序(Heapsort)是基于堆这种数据结构而设计的一种排序算法,堆排序可以被认为是一种改进的选择排序。与选择排序不同,堆排序不会对未排序区域进行线性时间扫描,因此会有效节约排序时间。
堆排序的最坏、最好、平均时间复杂度均为 O(nlogn), 它是不稳定排序。
一般降序排序使用最小堆,升序排序使用最大堆。
1.3 堆排序的思想
堆排序的基本思想是(以升序排序为例):
- 将待排序序列构造成一个最大堆;
- 此时,整个序列的最大值就是堆顶的根节点;
- 将根节点元素与末尾元素进行交换,此时末尾就为最大值;
- 然后将除了末尾元素外的剩余 n-1 个元素重新构造成一个最大堆,新的堆顶将会是 n 个元素的次大值;
- 如此反复执行步骤 3、4,便能得到一个有序序列。
可以看到,在构建最大堆的过程中,元素的个数逐渐减少,当最后堆中只剩下一个元素的时候,就得到了一个有序序列。
二、堆排序的步骤分析
根据堆排序的思想,完整的堆排序过程可以分为两大部分:构造最大堆(或最小堆)、元素交换并调整堆。
假设给定一个无序序列结构如下:
要求使用堆排序对其升序排序。下面将使用此二叉树来演示堆排序的过程。
步骤一:构造最大堆
- 从最后一个非叶子节点开始(对于一个完全二叉树,第一个非叶子结点的索引为
arr.length/2-1=5/2-1=1
,也就是下面的 6 结点),从左至右,从下至上进行调整。由于 [6, 5, 9] 中,9 元素最大,因此 6 和 9 交换。
- 找到第二个非叶节点 4,由于 [4, 9, 8] 中 9 元素最大,因此 4 和 9 交换。