程序员修炼之道 07:调试

不记录,等于没读。

这里是我阅读《程序员修炼之道》这本书的记录。


软件缺陷以各种方式表现出来,从对需求的误解到编码错误。现在的计算机系统仍有局限性,能干你让它干的事情,但不一定能干你想让它干的事情。本章介绍调试中涉及的问题,以及一些通用策略。

调试心理学

接受这样一个事实:调试只是在解决问题,并为此全力以赴。不要费时费力地把责任推到罪魁祸首身上,在技术领域,我们把精力集中在解决问题上,而不是归咎于他人

去解决问题,而不是责备

调试心态

调试的首要法则是不要恐慌。开始调试之前,正确的心态非常重要。要冷静,不要受到最后期限、上级的关注等影响,仔细的观察,认真的思考。

如果你看到 BUG 的第一反应是“这不可能”,那你就大错特错了。因为很明显它会发生,而且已经发生了。此时,你必须重新评估你一直笃信的真理:你有什么东西不知道,或者理解错了。

要注意不要浮于表面,永远去发掘问题的根本原因。

从哪里开始

当你试图解决任何问题时,需要收集所有相关的数据。首先需要观察上更准确。

调试策略

手动修改 BUG 前,首先要能重现 BUG。如果你不能重现它,就不能确定究竟是否修复了 BUG。

首先,看一眼问题。很多开发者一看见红色的异常弹出框,就立马切去看代码,不要这样。在此之前,读一下出错信息

把纸笔放在旁边会很有帮助,这样可以随时做笔记。特别是无意中发现一个线索,一番验证后发现不是这个问题时,如果之前没有记下从哪里开始的,可能会在找回源头上浪费很多时间。

使用 二分法 缩小问题的范围。比如一开始要是能确定是软件问题还是硬件问题,那么问题的可能性就能排除一半。

利用 调试器 观察程序当前的状态。

在程序设计的最开始,就考虑程序的 显见性 。优先编写能监视和显示内部状态的代码,用这些代码来充当我们的耳朵和眼睛,帮助我们回答那里有什么?发生了什么?
比如输出日志或跟踪信息。当时间本身就是一个影响因子时,比如并发进程、实时系统和基于事件的应用程序,跟踪都是不可或缺的。

跟踪消息应该采用规范一致的格式,因为有可能需要自动对其解析。

排除法:如果你只改变了一个东西,然后系统就不工作了,那么这个东西就最可能直接或间接的负有责任,不管看起来多么牵强。

如果你面对一个“让人吃惊”的错误时,必须接受之前的一个或多个假设是错误的。同时要牢记:不要只是假设,要证明


在《程序员修炼之道 06:基础工具》这篇文章中,我提到过自2018年开始,我会在一个专门的笔记本上记录我遇到的 BUG,包括 BUG 的现象、调试的过程,问题的根源,从中得到的教训,如何避免等。到现在为止,已经记录了两大本的素材,因此我自己也有一些调试心得,总的来说,调试有 4 个步骤,分别是:

  1. 重现 BUG
    当你发现一个 BUG 时应该怎么办?让它再次发生!
  2. 观察现象
    不要想,而要看
  3. 提出假设
    有时候觉得离奇,只是因为眼界不够
  4. 验证假设
    对于提出的每一个假设,用实验去证实或者证伪,然后记录下来

任何的 BUG ,都可以通过这些步骤来解决!它就像一个巨大的推土机。虽然可能行动缓慢、工作起来枯燥乏味,但一路上无论遇到什么障碍,它都能铲平。关于这 4 个步骤的具体内容可以参考我的博文《随想005:调试的思考》,这里不再赘述。






每一份打赏,都是对创作者劳动的肯定与回报。
千金难买知识,但可以买好多奶粉

### 光流法C++源代码解析与应用 #### 光流法原理 光流法是一种在计算机视觉领域中用于追踪视频序列中运动物体的方法。它基于亮度不变性假设,即场景中的点在时间上保持相同的灰度值,从而通过分析连续帧之间的像素变化来估计运动方向和速度。在数学上,光流场可以表示为像素位置和时间的一阶导数,即Ex、Ey(空间梯度)和Et(时间梯度),它们共同构成光流方程的基础。 #### C++实现细节 在给定的C++源代码片段中,`calculate`函数负责计算光流场。该函数接收一个图像缓冲区`buf`作为输入,并初始化了几个关键变量:`Ex`、`Ey`和`Et`分别代表沿x轴、y轴和时间轴的像素强度变化;`gray1`和`gray2`用于存储当前帧和前一帧的平均灰度值;`u`则表示计算出的光流矢量大小。 #### 图像处理流程 1. **初始化和预处理**:`memset`函数被用来清零`opticalflow`数组,它将保存计算出的光流数据。同时,`output`数组被填充为白色,这通常用于可视化结果。 2. **灰度计算**:对每一像素点进行处理,计算其灰度值。这里采用的是RGB通平均值的计算方法,将每个像素的R、G、B值相加后除以3,得到一个近似灰度值。此步骤确保了计算过程的鲁棒性和效率。 3. **光流向量计算**:通过比较当前帧和前一帧的灰度值,计算出每个像素点的Ex、Ey和Et值。这里值得注意的是,光流向量的大小`u`是通过`Et`除以`sqrt(Ex^2 + Ey^2)`得到的,再乘以10进行量化处理,以减少计算复杂度。 4. **结果存储与阈值处理**:计算出的光流值被存储在`opticalflow`数组中。如果`u`的绝对值超过10,则认为该点存在显著运动,因此在`output`数组中将对应位置标记为黑色,形成运动区域的可视化效果。 5. **状态更新**:通过`memcpy`函数将当前帧复制到`prevframe`中,为下一次迭代做准备。 #### 扩展应用:Lukas-Kanade算法 除了上述基础的光流计算外,代码还提到了Lukas-Kanade算法的应用。这是一种更高级的光流计算方法,能够提供更精确的运动估计。在`ImgOpticalFlow`函数中,通过调用`cvCalcOpticalFlowLK`函数实现了这一算法,该函数接受前一帧和当前帧的灰度图,以及窗口大小等参数,返回像素级别的光流场信息。 在实际应用中,光流法常用于目标跟踪、运动检测、视频压缩等领域。通过深入理解和优化光流算法,可以进一步提升视频分析的准确性和实时性能。 光流法及其C++实现是计算机视觉领域的一个重要组成部分,通过对连续帧间像素变化的精细分析,能够有效捕捉和理解动态场景中的运动信息
微信小程序作为腾讯推出的一种轻型应用形式,因其便捷性与高效性,已广泛应用于日常生活中。以下为该平台的主要特性及配套资源说明: 特性方面: 操作便捷,即开即用:用户通过微信内搜索或扫描二维码即可直接使用,无需额外下载安装,减少了对手机存储空间的占用,也简化了使用流程。 多端兼容,统一开发:该平台支持在多种操作系统与设备上运行,开发者无需针对不同平台进行重复适配,可在一个统一的环境中完成开发工作。 功能丰富,接口完善:平台提供了多样化的API接口,便于开发者实现如支付功能、用户身份验证及消息通知等多样化需求。 社交整合,传播高效:小程序深度嵌入微信生态,能有效利用社交关系链,促进用户之间的互动与传播。 开发成本低,周期短:相比传统应用程序,小程序的开发投入更少,开发周期更短,有助于企业快速实现产品上线。 资源内容: “微信小程序-项目源码-原生开发框架-含效果截图示例”这一资料包,提供了完整的项目源码,并基于原生开发方式构建,确保了代码的稳定性与可维护性。内容涵盖项目结构、页面设计、功能模块等关键部分,配有详细说明与注释,便于使用者迅速理解并掌握开发方法。此外,还附有多个实际运行效果的截图,帮助用户直观了解功能实现情况,评估其在实际应用中的表现与价值。该资源适用于前端开发人员、技术爱好者及希望拓展业务的机构,具有较高的参考与使用价值。欢迎查阅,助力小程序开发实践。资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值