原题呈现
题目描述
对于长度为n的数组a,满足ai∈[0,m)且0∼m−1的每个数都在a中出现过。
现在旮旯要对这 n 个数进行 k 循环移位,即令 a′=a[k…n]+a[1…(k−1)],其中 k∈[1,n
- 例如a=[0,1,2,3],那么k=3时得到a′=[2,3,0,1]。
对于当前循环移位得到的数组a′,设v∈[0,m)的首次出现下标为p(v),我们称a′为好数组当且仅当a′ 满足:
- 对∀v∈[0,m−1)都要有p(v)<p(v+1)。
现在旮旯正在演讲,不能分心计算,所以他想请你帮他计算有多少个k循环移位好数组。
输入描述:
第1行两个空格隔开的正整数n,m(1≤m≤n≤2⋅) 。
第2行n个空格隔开的正整数ai (0≤ai<m)。
输出描述:
一个整数,表示k循环移位好数组的个数。
题目解答
如果直接模拟,可以写出如下代码:
#include<bits/stdc++.h>
using namespace std;
int ans;
bool p[200005];
signed main(){
int n,m;cin>>n>>m;
vector<int>a(n);
for(int i=0;i<n;i++)cin>>a[i];
for(int k=1;k<=n;k++){
//k循环移位
for(int i=0;i<m;i++)p[i]=0;
int now=0;bool is=true;
for(int i=0;i<=k-2;i++){
if(p[a[n-k+1+i]]==0){
p[a[n-k+1+i]]=1;
if(a[n-k+1+i]==now)now++;
else {
is=false;
break;
}
}
}
if(is){
for(int i=k-1;i<=n-1;i++){
if(p[a[i-k+1]]==0){
p[a[i-k+1]]=1;
if(a[i-k+1]==now)now++;
else {
is=false;
break;
}
}
}
}
if(is)ans++;
}
cout<<ans;
return 0;
}
以上代码的时间复杂度是O(