matlab中trainingOptions的参数详细解析

在MATLAB中,trainingOptions函数用于配置深度学习模型训练的参数,其参数覆盖了优化算法、学习率策略、数据处理、性能监控等多个维度。以下是2025年最新版本中所有参数的详细解析(基于R2024b及后续版本):

一、核心优化算法参数

1. 'Solver' - 优化器类型
  • 取值'sgd'(随机梯度下降)、'sgdm'(带动量的SGD)、'rmsprop''adam'
  • 作用:决定参数更新方式
    • 'sgdm'适合大型数据集(动量加速收敛)
    • 'adam'自动调整学习率,适合稀疏数据
2. 'InitialLearnRate' - 初始学习率
  • 取值:正数(如0.001)
  • 作用:控制参数更新步长,过高会震荡,过低收敛慢
  • 最佳实践:CNN常用0.001-0.01,RNN用0.0001-0.001
3. 'Momentum' - 动量因子(仅sgdm有效)
  • 取值:0-1之间(如0.9)
  • 作用:加速收敛并抑制震荡,模拟物理动量效应
4. 'L2Regularization' - L2正则化强度
  • 取值:正数(如0.0001)
  • 作用:抑制过拟合,添加权重衰减项

二、学习率调度参数

1. 'LearnRateSchedule' - 学习率调度策略
  • 取值
    • 'none'(固定学习率)
    • 'piecewise'(分段常数)
    • 'exponential'(指数衰减)
    • 'polynomial'(多项式衰减)
    • 'cosine'(余弦退火)
2. 'LearnRateDropFactor' - 学习率下降因子
  • 取值:0-1之间(如0.1)
  • 作用:每次调度时学习率乘以该因子
3. 'LearnRateDropPeriod' - 学习率下降周期
  • 取值:正整数(如10)
  • 作用:每训练多少轮后下降学习率(仅'piecewise'有效)
4. 'Power' - 多项式衰减幂次(仅'polynomial'有效)
  • 取值:正数(如2)
  • 公式lr = initial_lr * (1 - epoch/max_epochs)^power

三、训练过程控制

1. 'MaxEpochs' - 最大训练轮数
  • 取值:正整数(如50)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值