- 博客(2)
- 收藏
- 关注
原创 图卷积神经网络基础
本文系统梳理了GCN所需的谱图理论与傅里叶变换基础。在谱图理论部分,详细介绍了概率转移矩阵(描述随机游走)、拉普拉斯矩阵(衡量图信号平滑性)及其归一化形式,以及随机游走的稳态分布特性。在傅里叶变换部分,阐述了傅里叶级数与变换的核心思想,以及卷积定理(时域卷积等价于频域相乘)的数学推导。这些理论为理解图卷积操作(空域与频域视角)提供了关键基础,特别是通过拉普拉斯矩阵的特征分解实现图信号在谱域的卷积处理。
2025-05-27 17:53:04
550
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人