主要内容
理解赛题数据和目标,清楚评分体系。
赛题
零基础入门数据挖掘 - 二手车交易价格预测。
链接:零基础入门数据挖掘 - 二手车交易价格预测
了解赛题
赛题概况
赛题以预测二手车的交易价格为任务,数据集报名后可见并可下载,该数据来自某交易平台的二手车交易记录,总数据量超过40w,包含31列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取15万条作为训练集,5万条作为测试集A,5万条作为测试集B,同时会对name、model、brand和regionCode等信息进行脱敏。
数据概况
一般而言,对于数据在比赛界面都有对应的数据概况介绍(匿名特征除外),说明列的性质特征。了解列的性质会有助于我们对于数据的理解和后续分析。 Tip:匿名特征,就是未告知数据列所属的性质的特征列。
train.csv
- SaleID - 销售样本ID
- name - 汽车编码
- regDate - 汽车注册时间
- model - 车型编码
- brand - 品牌
- bodyType - 车身类型
- fuelType - 燃油类型
- gearbox - 变速箱
- power - 汽车功率
- kilometer - 汽车行驶公里
- notRepairedDamage - 汽车有尚未修复的损坏
- regionCode - 看车地区编码
- seller - 销售方
- offerType - 报价类型
- creatDate - 广告发布时间
- price - 汽车价格
- v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’, ‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’, ‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’,‘v_14’ 【匿名特征,包含v0-14在内15个匿名特征】
数字全都脱敏处理,都为label encoding形式,即数字形式
预测指标
本赛题的评价标准为MAE(Mean Absolute Error):
M A E = ∑ i = 1 n ∣ y i − y ^ i ∣ n MAE = \frac {\sum_{i=1}^n|y_i-\widehat{y}_i|}n{} MAE=n∑i=1n∣yi−y
i∣其中, y i y_i yi代表第i个样本的真实值, y ^ i \widehat{y}_i y
i代表第i个样本的预测值。
一般问题评价指标说明:
评估指标的定义:
评估指标即是我们对于一个模型效果的数值型量化。(有点类似与对于一个商品评价打分,而这是针对于模型效果和理想效果之间的一个打分)
一般来说分类和回归问题的评价指标有如下一些形式:
分类算法常见的评估指标:
- 对于二类分类器/分类算法,评价指标主要有accuracy, [Precision,Recall,F-score,Pr曲线],ROC-AUC曲线。
- 对于多类分类器/分类算法,评价指标主要有accuracy, [宏平均和微平均,F-score]。
回归预测类常见的评估指标:
- 平均绝对误差(Mean Absolute Error,MAE),均方误差(Mean Squared Error,MSE),平均绝对百分误差(Mean Absolute Percentage Error,MAPE),均方根误差(Root Mean Squared Error), 可决系数 R 2 R^2 R2(R-Square)
平均绝对误差(MAE)能够更好地反映预测值与真实值误差的实际情况,其计算公式:
M A E = 1 N ∑ i = 1 n ∣ y i − y ^ i ∣ MAE = \frac{1}{N}\sum_{i=1}^n|y_i-\widehat{y}_i| MAE=N1i=1∑n∣y