【machine learning-15-如何判定梯度下降是否在收敛】

我们在运行梯度下降的时候,如何判定梯度下降是否在收敛呢?
梯度下降的时候,权重和偏置根据如下的公式同时更新:
在这里插入图片描述
程序要做的就是更新w 和 b,让梯度下降尽快的收敛,但是如何判定正在收敛呢?

方法一:绘制损失函数的曲线

这个是最通常的做法,绘制损失函数的曲线:
注意此时横轴不再是w权重,而是迭代次数,这个迭代是指w和b同时更新为一个迭代。
在这里插入图片描述
这个曲线的每一个点就表示,执行横轴的迭代次数后,损失是纵轴的数值。
真正梯度收敛的曲线应该就是上图这样的。损失成下降趋势,到某一个阈值的时候,损失几乎不再变化,像是一条直线,比如上图示例中300到400迭代。
另外需要注意的是,具体需要迭代多少次才能达到收敛,这个是不确定的,需要看具体的应用。

方法二:自动收敛测试

这种方法是先指定一个阈值,比如0.001,当损失到达这个值,我们就认为此时收敛了。但是通常情况下这个值很难确定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值