【RAG-十 一-检索增强技术之迭代增强】

RAG 检索增强技术之 迭代增强(Iterative Retrieval-Augmented Generation)

在构建高性能的 RAG(Retrieval-Augmented Generation) 系统中,单次检索和生成往往难以覆盖复杂问题所需的全部上下文信息。为了提升系统的准确性和鲁棒性,研究人员提出了一种系统性的增强方法:迭代增强(Iterative Retrieval-Augmented Generation)

该方法的核心思想是:

将传统的“一次检索 + 一次生成”流程扩展为多轮迭代过程,每一轮都是一次完整的 RAG 流程 —— 即 检索 → 增强 → 生成
在每一轮中,模型不仅生成答案,还提取新的关键词或推理出新的子问题,用于下一轮更精准的检索,逐步逼近最终答案。


一、什么是迭代增强?

✅ 基本概念

迭代增强(Iterative RAG) 是一种将 RAG 过程重复执行多次的方法。每一次迭代都包含以下步骤:

  1. 检索(Retrieve):基于当前问题或子问题从知识库中检索相关信息;
  2. 增强(Augment):将检索结果与已有上下文融合;
  3. 生成(Generate):生成中间答案,并从中提取新线索(如关键词、子问题等);
  4. 反馈(Feedback):将新线索用于下一轮检索,形成闭环迭代。

这种策略特别适用于:

  • 多跳问答(Multi-hop QA)
  • 复杂推理任务
  • 需要多步检索才能回答的问题
  • 用户提问模糊或信息不完整的情况

二、核心思想与优势

🧠 核心思想

特点描述
循环增强每一轮生成的内容可以作为下一轮检索的输入,不断优化上下文
动态更新根据中间生成内容调整检索策略,提高相关性
分步解决将复杂问题拆解为多个可检索的子问题,逐一解决

✅ 优势总结

优势描述
提高准确性多轮迭代有助于筛选出更相关的文档
增强鲁棒性对模糊或不完整的问题具有更强适应能力
支持复杂推理可以处理需要多跳推理或多源信息整合的问题
透明可控中间生成内容可被记录、分析、调试,提升可解释性

三、流程图展示

用户提问
第1轮检索
生成初步答案
提取关键词/子问题
第2轮检索
生成改进答案
提取新线索
是否收敛?
第N轮检索
生成最终答案

四、实现示例(伪代码)

下面是一个使用 Python 和 LangChain 框架结合 Qwen 模型的迭代增强实现思路。

💻 示例代码(伪代码 + 实现逻辑)

from langchain.retrievers import BM25Retriever, FAISS
from langchain.embeddings import QwenEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import Qwen

# 初始化基础组件
qwen_model = Qwen(model_name="Qwen-Max")
bm25_retriever = BM25Retriever.from_load("bm25_index.pkl")
vector_store = FAISS.load_local("faiss_index", QwenEmbeddings())
qa_chain = RetrievalQA.from_chain_type(llm=qwen_model, retriever=vector_store.as_retriever())

def extract_sub_questions(answer):
    # 从生成的答案中提取新的子问题或关键词
    prompt = f"请从以下答案中提取可能帮助进一步检索的关键词或子问题:\n{answer}"
    new_questions = qwen_model(prompt)
    return [q.strip() for q in new_questions.split("\n") if q.strip()]

# 迭代增强主函数
def iterative_rag(query, max_iterations=3):
    all_contexts = []
    current_query = query
    
    for i in range(max_iterations):
        print(f"\n--- 第 {i+1} 轮迭代 ---")
        
        # Step 1: 检索
        context = qa_chain.run(current_query)
        all_contexts.append(context)
        
        # Step 2: 生成中间答案
        full_answer = "\n".join(all_contexts)
        final_prompt = f"根据以下信息回答问题:\n{full_answer}\n\n问题:{query}"
        answer = qwen_model(final_prompt)
        print("当前答案:", answer)
        
        # Step 3: 提取新线索
        sub_questions = extract_sub_questions(answer)
        if not sub_questions:
            print("未提取到新线索,提前终止迭代。")
            break
        
        current_query = sub_questions[0]  # 使用第一个新线索进行下一轮检索

    # 返回最终答案
    return answer

# 示例调用
user_query = "量子计算的基本原理是什么?它如何影响现代加密算法?"
final_answer = iterative_rag(user_query)
print("\n最终答案:", final_answer)

五、适用场景

场景说明
多跳问答如“谁写了《百年孤独》?他的其他作品有哪些?”
复杂推理任务如法律咨询、医疗诊断中的多条件判断
模糊问题澄清用户问题不明确时,通过迭代逐步澄清需求
长文档问答处理大段文本中的分散信息整合问题

六、总结

迭代增强(Iterative Retrieval-Augmented Generation) 是一种系统性、结构化的增强策略,能够显著提升 RAG 系统在面对复杂问题时的表现。

其关键在于:

  • 将传统 RAG 扩展为多轮交互流程;
  • 利用每次生成的内容指导后续检索;
  • 通过反馈机制不断优化上下文信息;
  • 最终输出更准确、全面、可信的回答。

在实际部署中,建议:

  • 控制最大迭代次数防止无限循环;
  • 引入收敛判断机制(如相似度阈值);
  • 结合 Self-RAG 技术实现自适应增强;
  • 使用缓存机制减少重复检索开销。

📌 后续扩展方向建议:

  • 引入强化学习自动控制迭代路径;
  • 使用 LLM 自动评估答案质量并决定是否继续迭代;
  • 结合思维链(Chain-of-Thought)进行多步推理引导检索;
  • 构建可视化界面展示每轮迭代过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值