TNNLS期刊接受后,最终版提交说明

前沿:TNNLS现已变为匿名投稿(单盲,盲作者),
因此前期Latex中不存在作者、单位、邮箱等信息

1 TNNLS期刊官网
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385

2 IEEE Author Portal

现在IEEE都是在这个Portal界面里面提交

a 查看接受文件
b 提交

3 提交Latex包

4 提交 Latex pdf

Latex部分

a 检查latex (IEEE latex analyzer)
b 优化引文 (IEEE Reference Preparation Assitant)

PDF部分
c IEEE templateSelector 这个是参考IEEE参考模板
https://template-selector.ieee.org/secure/templateSelector/publicationType
(参考这个
1 添加 作者信息、单位、邮箱,因为TNNLS匿名
2 去除补充材料(在投稿阶段如果添加了补充材料这里去除,占用版面费)

)

5 上传latex压缩包(xxx.zip) 和PDF文件之后,
进入 发布同意 文件

6


 

确认题目+作者
原创说明

签名

### IEEE Transactions on Neural Networks and Learning Systems (TNNLS) 投稿指南与要求 #### 期刊背景 IEEE Transactions on Neural Networks and Learning Systems 是由 IEEE Computational Intelligence Society (CIS)[^2] 发布的一份权威学术期刊,专注于神经网络和学习系统的理论研究及其应用。 #### 投稿流程概述 为了向该期刊提交稿件,作者需遵循严格的投稿流程以及格式规范。以下是主要的要求: 1. **在线投稿平台**: 所有文章均通过 ScholarOne Manuscripts 平台提交。此平台允许作者上传文档并填写必要的元数据信息。 2. **原创性和未发表声明**: 提交的文章必须未曾公开发表过,并且不得同时投递给其他出版物或会议审议中。 3. **同行评审过程**: 文章经过初步筛选后会进入双盲审查阶段,在这一过程中审稿人的身份对作者保密,反之亦然。通常每篇论文会有至少两位独立专家进行评估[^1]。 4. **修改意见处理**: 如果收到修订通知,则需要按照反馈认真调整原稿内容后再重新递交;如果被拒稿则无法再次以相同版本尝试同一期号下的录用机会。 #### 格式和技术规格 - **长度限制**: 正文部分一般不超过8页标准LaTeX模板生成的内容(不计附录)。超出规定页面数可能会产生额外费用。 - **结构组成**: - 摘要(Abstract): 应简洁明了地概括全文主旨及贡献点; - 关键词(Keywords): 列举几个能够代表主题方向的重要术语; - 引言(Introduction): 清晰阐述研究动机、目标及相关工作综述; - 方法论(Methodology)/实验设置(Experiment Setup); - 结果分析(Result Analysis); - 讨论(Discussion); - 参考文献(References). - **引用风格**: 使用 IEEE 的参考文献样式来编排所有外部资源链接。例如: ```bibtex @article{example, author={A. Author}, journal={Journal Name}, title={Title of the Paper} , year={YYYY}, volume={VOL}, number={NUM}, pages={PAGE-RANGE}} ``` - **图形质量**: 图像分辨率应达到300dpi以上以便印刷清晰可见。 #### 版权转让协议 一旦接受发表邀请,作者还需签署一份版权转移合同给 IEEE 组织方持有最终所有权。 #### 审核周期预估 整个审核时间跨度可能较长,从初次提交到正式接收平均耗时约四至六个月甚至更久取决于具体情形下所需轮次数量多少等因素影响。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机视觉-Archer

图像分割没有团队的同学可加群

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值