PyTorch笔记1--基本概念和Tensor

本文介绍了PyTorch在机器学习领域的优势,包括其易上手性、灵活的代码结构、方便的调试、规范的文档以及丰富的资源。详细讲解了张量的基本概念,如何创建和操作张量,以及在模型训练中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PyTorch优点

上手快:掌握Numpy和基本深度 学习概念即可上手

代码简洁灵活:用nn.module封装使网络搭建更方便;基于动态图机制,更灵活

Debug方便:和调试Python一样简单

文档规范:http://PyTorch.org/docs/可查各版本文档

资源多:arXiv中的新算法大多都有PyTorch实现

开发者多:GitHub上贡献者已超过1350+

背靠大树:FaceBook维护开发

机器学习模型训练步骤 :数据、模型、损失函数、优化器596665709974460a863e97ae7a1dcab2.png

张量基本概念

张量(torch.Tensor):

        一个多维数组,标量、向量、矩阵的高维拓展,在pytorch中是自动求导的关键

张量的主要属性(8个,4个与梯度求导相关,4个与数据相关):

        data:被包装的tensor

        grab:data的梯度

        grab_fn:创建Tensor的Function,是自动求导的关键

        require_grad:指示是否需要梯度

   &nbs

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值