PyTorch优点
上手快:掌握Numpy和基本深度 学习概念即可上手
代码简洁灵活:用nn.module封装使网络搭建更方便;基于动态图机制,更灵活
Debug方便:和调试Python一样简单
文档规范:http://PyTorch.org/docs/可查各版本文档
资源多:arXiv中的新算法大多都有PyTorch实现
开发者多:GitHub上贡献者已超过1350+
背靠大树:FaceBook维护开发
机器学习模型训练步骤 :数据、模型、损失函数、优化器
张量基本概念
张量(torch.Tensor):
一个多维数组,标量、向量、矩阵的高维拓展,在pytorch中是自动求导的关键
张量的主要属性(8个,4个与梯度求导相关,4个与数据相关):
data:被包装的tensor
grab:data的梯度
grab_fn:创建Tensor的Function,是自动求导的关键
require_grad:指示是否需要梯度
&nbs