PyTorch笔记9--transforms数据增强(二)

本文介绍了PyTorch库中的各种图像变换技术,包括Pad填充、ColorJitter颜色调整、RandomGrayscale灰度化、RandomAffine仿射变换、RandomErasing随机遮挡等,以及自定义的椒盐噪声添加和Compose组合变换。这些变换用于数据增强,提升深度学习模型的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

transforms--图像变换

1.pad

transforms.Pad(#对图片边缘进行填充
    padding, 
    #设置填充大小
    #当为a时,上下左右均填充a个像素
    #当为(a, b)时,上下填充b个像素,左右填充a个像素
    #当为(a, b, c, d)时,左,上,右,下分别填充a, b, c, d
    padding_mode='constant',#填充模式,有4种模式,constant、edge、reflect和symmetric
    fill=0#constant时,设置填充的像素值,(R, G, B) or (Gray)
)

2.ColorJitter

transforms.ColorJitter(#调整亮度、对比度、饱和度和色相
    brightness=0, 
    #亮度调整因子
    #当为a时,从[max(0, 1-a), 1+a]中随机选择
    #当为(a, b)时,从[a, b]中
    contrast=0, #对比度参数,同brightness
    saturation=0, #饱和度参数,同brightness
    hue=0
    #色相参数
    #当为a时,从[-a, a]中选择参数,注: 0<= a <= 0.5
    #当为(a, b)时,从[a, b]中选择参数,注:-0.5 <= a <= b <= 0.5
)

3.RandomGrayscale和Grayscale

RandomGrayscale(#依概率将图片转换为灰度图
    num_output_channels,#输出通道数,只能设1或3
    p=0.1#概率值,图像被转换为灰度图的概率
)


Grayscale(
    num_outpu
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值