PyTorch笔记28--模型微调(Finetune)

本文介绍了机器学习中的TransferLearning概念,重点讲解了在PyTorch中进行模型微调的步骤,包括获取预训练模型参数、修改输出层,以及如何通过固定预训练参数和调整学习率进行训练方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transfer Learning & Model Finetune

Transfer Learning:机器学习分支,研究源域(source domain)的知识如何应用到目标域(target domain)

PyTorch中的Finetune

Model Finetune:模型的迁移学习

模型微调步骤:

        1. 获取预训练模型参数

        2. 加载模型(load_state_dict)

        3. 修改输出层

模型微调训练方法:

        1. 固定预训练的参数(requires_grad =False;lr=0)

        2. Features Extractor较小学习率(params_group)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值