<读论文>(ResNet)Deep Residual Learningfor Image Recognition--图像识别中的深度残差学习网络

作者:Kaiming He, Xiangyu Zhang ,Shaoqing Ren, Jian Sun
单位:MSRA
发表会议及时间:CVPR 2016

背景:

        在ILSVRC(大规模图像识别挑战赛)中,仅采用ResNet结构,无额外的技巧,夺得五个冠军(ImageNet分类、定位、检测;COCO检测、分割),且与第二名拉开差距

        借鉴Highway Network:首个成功训练成百“上千层”(100层及900层)的卷积神经网络

研究意义:

1. 简洁高效的ResNet受到工业界宠爱,自提出以来已经成为工业界最受欢迎的卷积神经网络结构
2. 近代卷积神经网络发展史的又一里程碑,突破千层网络,跳层连接成为标配

摘要:

        1.深度网络难训练
        2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值