原题CodeForces 906D Power Tower 有限幂塔函数模板(此题参考)
BZOJ 3884 无限次模板
一.题意及分析
题意:
求log*a(x)>=b,最小x
分析:
可以看出是单调递增,显然取等号,x最小
观察可知,x>=1,不断递归下去,左边每次递归累加1,右边log*a(F(x))中F(x)不断取log,最终x=a时,F(x)=0,此时log*a=-1,加上左边的1,正好抵消,所以共递归了b次(不包含最后一次),最后左边累加的结果刚好就是b
因此实际求一个幂塔函数:
x = a^a^a^.........^a^a(一共b个a的高阶幂)%m;
于是用欧拉降幂:(分析见上面,有限个幂塔函数模板题链接)
但注意特判a,b,mod=0 or 1
二.代码
#include<bits/stdc++.h>
#define Mod(a,b) a<b?a:a%b+b //重定义取模,按照欧拉定理的条件
#define LL long long
#define N 100010
using namespace std;
LL n,q,mod,a;
map<LL,LL> mp;
LL qpow(LL x,LL n,LL mod)
{
LL res=1;
while(n)
{
if (n&1) res=Mod(res*x,mod),n--;
x=Mod(x*x,mod); n>>=1;
}
return res;
}
LL phi(LL k)
{
LL i,s=k,x=k;
if (mp.count(k)) return mp[x]; //记忆化存储
for(i = 2;i * i <= k; i++)
{
if(k % i == 0) s = s / i * (i - 1);
while(k % i == 0) k /= i;
}
if(k > 1) s = s / k * (k - 1);
mp[x]=s; return s;
}
LL solve(LL l,LL r,LL mod)
{
if (l==r||mod==1) return Mod(a,mod); //如果到右端点或者φ值等于1,那么直接返回当前数字
return qpow(a,solve(l+1,r,phi(mod)),mod); //否则指数为[l+1,r]区间的结果
}
int main()
{
//scanf("%lld%lld",&n,&mod);
// for(int i=1;i<=n;i++)
//scanf("%lld",&a[i]);
scanf("%lld",&q);
while(q--)
{
LL L,R;
scanf("%lld%lld%lld",&a,&R,&mod);
if(mod == 1)//两句特判必不可少,不然WA
printf("0\n");
else if(R== 0 || a == 1)
printf("1\n");
else
printf("%lld\n",solve(1,R,mod)%mod);
//对mod取模,因为qpow内部是用Mod(a,b)取模
}
return 0;
}