
机器学习与深度学习
文章平均质量分 63
学习机器学习与深度学习的各种算法,项目,架构等
CoderIsArt
内视、慎独、无悔代码人生;数字化、人性化、科学化;自省的底层程序员,努力与世界同步。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
人工智能是否会推理?
当前大语言模型(如GPT-4)的"推理"本质上是统计模式匹配而非真正的逻辑推理。它们通过学习海量数据的统计关联来生成文本,但缺乏逐步推导和规则调整能力,无法自主构建新逻辑体系或处理反事实推理。虽然在某些封闭领域任务中能模拟推理行为,但在需要严格逻辑、抽象思维或动态调整的场景中表现不足。未来突破可能需要结合神经符号系统、元学习和可解释架构。这一探讨揭示了AI推理与人类智能的本质差异,也引发了关于"理解"是否需要"解释"的深层思考。原创 2025-06-19 03:33:00 · 273 阅读 · 0 评论 -
再传入原则(Reentrant Principle)与卡尔曼滤波器(Kalman Filter)
再传入原则与卡尔曼滤波器的类比揭示了大脑处理不确定信息的动态反馈机制。该理论认为高阶脑区生成预测,低阶区域返回误差信号,通过再传入环路持续调整(类似卡尔曼滤波更新)。神经证据显示,皮层反馈连接和丘脑-皮层振荡可能实现类似"卡尔曼增益"的误差调节。尽管存在非线性系统与生物实现的差异,这一框架为理解感知优化、意识及精神疾病提供了统一的计算神经科学基础。原创 2025-06-18 07:23:49 · 325 阅读 · 0 评论 -
线性代数(1)线性方程组的多种解法
本文系统梳理了线性方程组的解法体系:1. 直接法(高斯消元、LU分解等)适用于中小规模精确求解;2. 迭代法(如共轭梯度、GMRES)针对大规模稀疏问题;3. 特殊解法处理欠定/超定方程组(SVD、最小二乘)。选择依据矩阵特性、规模、精度需求和计算资源,实际应用中常需结合矩阵分解(QR/SVD)和预处理技术提升效率。原创 2025-06-15 10:28:32 · 516 阅读 · 0 评论 -
程序员转向人工智能
《程序员转型AI学习路线速成指南》针对程序员转AI的核心建议:1)基础补足数学(线性代数/概率/优化)与Python工具链(PyTorch/Scikit-learn);2)快速掌握机器学习经典算法和深度学习核心架构(CNN/Transformer);3)选择CV/NLP等细分领域实战,通过Kaggle竞赛和开源项目积累经验;4)突出工程化优势,侧重模型部署能力。建议6个月分阶段突破,利用编程背景跳过基础语法,直接进入项目实践。转型关键在于"学习-实践"闭环,重点培养AI问题解决能力而非死磕理论。原创 2025-06-12 08:57:31 · 1330 阅读 · 0 评论 -
Hugging Face 的 Transformers 库
Hugging Face transformer库入门介绍原创 2025-04-13 16:03:20 · 544 阅读 · 0 评论 -
利用人工智能AI进行机器加工编程语言之间的翻译
AI翻译原创 2025-03-24 10:59:35 · 969 阅读 · 0 评论 -
基于深度学习的相位调制算法步骤
一种相位调制的深度学习算法框架原创 2025-03-23 15:57:24 · 366 阅读 · 0 评论 -
基于深度学习的光场调控简介
基于深度学习的光场调控原创 2025-03-23 10:00:57 · 1079 阅读 · 0 评论 -
机器学习(1)安装Pytorch
Pytorch在本机的安装原创 2025-02-19 23:14:01 · 1133 阅读 · 0 评论 -
深度学习系列(1) TensorFlow---Tensorflow学习路线
TensorFlow入门学习路线原创 2024-09-03 07:35:38 · 1580 阅读 · 1 评论 -
机器视觉入门知识体系整理(不全)
机器视觉原创 2022-04-28 09:27:31 · 2435 阅读 · 0 评论 -
Yolo系列__Yolov1简介
Yolov原创 2022-04-19 14:40:47 · 7277 阅读 · 0 评论