大数据项目:贷款风险预测

该博客介绍了使用pandas进行大数据项目中的贷款风险预测,包括数据读取、冗余列删除、数据清洗、正则表达式去除中文及百分号、数据可视化探索,以及运用机器学习的高斯方法进行建模预测。在数据处理过程中遇到了pycharm显示Dataframe列限制、csv读取错误等问题,并对sklearn中的cross_validation报错进行了调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目介绍:

Apandas 进行数据处理

1、读取数据

import pandas as pd
pd.set_option('display.max_columns', None)
load_data = pd.read_csv(r'C:\Users\lab-635\Desktop\A3C\shixizhunbei\PD\price_of _house\LoanStats3a1.csv', encoding='ISO-8859-1')

这部分出现了一些问题:

1)针对pycharm不能将Dataframe列全部显示的问题,在读取之前加入代码

pd.set_option('display.max_columns', None)

2)针对csv文件读取错误的问题,在pd.read_csv参数中加入

encoding='ISO-8859-1'

2、删除冗余列

针对数据中整列都是Nan的列,进行删除操作

load_data = load_data.dropna(axis = 1, how = 'all')

load_data.dropna参数解析:

        axis: 0 表示行; 1 表示列

       how:  all  表示整列删除

3、数据清洗

1)首先选中其中的一些重要的列

load_data_clean = load_data[['loan_amnt','funded_amnt','term','int_rate','installment','emp_length','dti','annual_inc','total_pymnt','total_pymnt_i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值