记录了初步解题思路 以及本地实现代码;并不一定为最优 也希望大家能一起探讨 一起进步
目录
12/2 52. N 皇后 II
dfs
使用三个set记录已有皇后的位置
列,左到右的斜线,右到左的斜线
y, x+y, x-y
如果当前位置可以放 那么将这三个值放入 并记录当前x层的列位置y
查看下一层x+1
如果已到了最后一层则保存当前其情况
否则将刚才的状态清空 查看下一个位置
def totalNQueens(n):
"""
:type n: int
:rtype: int
"""
col,ltr,rtl =set(),set(),set()
ans=[]
pos=[]
def dfs(y):
for x in range(n):
if (x not in col) and ((x+y) not in ltr) and ((x-y) not in rtl):
col.add(x)
ltr.add(x+y)
rtl.add(x-y)
pos.append(x)
if y+1==n:
tmp=pos[:]
ans.append(tmp)
else:
dfs(y+1)
col.remove(x)
ltr.remove(x+y)
rtl.remove(x-y)
pos.pop()
dfs(0)
return(len(ans))
12/3 3274. 检查棋盘方格颜色是否相同
a看作0 相加奇偶性一致颜色一致
def checkTwoChessboards(coordinate1, coordinate2):
"""
:type coordinate1: str
:type coordinate2: str
:rtype: bool
"""
if (ord(coordinate1[0])+int(coordinate1[1])-ord(coordinate2[0])-int(coordinate2[1]))%2==0:
return True
12/4 2056. 棋盘上有效移动组合的数目
createmoves 生成某个棋子所有可能移动
check检查两个棋子移动是否会重叠
枚举每个合法移动 如果棋子没有重叠则答案+1
如果当前棋子移动和前面棋子冲突则不往下递归
def countCombinations(pieces, positions):
"""
:type pieces: List[str]
:type positions: List[List[int]]
:rtype: int
"""
def createmoves(x0,y0,dirs):
moves = [(x0,y0,0,0,0)]
for dx,dy in dirs:
x,y=x0+dx,y0+dy
step = 1
while 0<x<=8 and 0<y<=8:
moves.append((x0,y0,dx,dy,step))
step+=1
x+=dx
y+=dy
return moves
def check(m1,m2):
x1,y1,dx1,dy1,step1=m1
x2,y2,dx2,dy2,step2=m2
for i in range(max(step1,step2)):
if i<step1:
x1+=dx1
y1+=dy1
if i<step2:
x2+=dx2
y2+=dy2
if x1==x2 and y1==y2:
return False
return True
rookstep = [(1,0),(0,1),(-1,0),(0,-1)]
bishopstep = [(1,1),(1,-1),(-1,1),(-1,-1)]
allsteps={'r':rookstep,'b':bishopstep,'q':rookstep+bishopstep}
allmoves=[createmoves(x,y,allsteps[p[0]]) for p,(x,y) in zip(pieces,positions)]
n=len(pieces)
path=[None]*n
global ans
ans=0
def dfs(i):
global ans
if i==n:
ans+=1
return
for m1 in allmoves[i]:
if all(check(m1, m2) for m2 in path[:i]):
path[i]=m1
dfs(i+1)
dfs(0)
return ans
12/5 3001. 捕获黑皇后需要的最少移动次数
在没有阻挡的情况下
不管什么位置 车最多用两步捕获皇后
象在斜线上 无阻挡用一步
先判断象和皇后是否在一条斜线上
如果车在他们中间则返回2 否则返回1
在判断车和皇后是否在一条直线上
如果象在中间 则返回2 否则1
其余情况车到皇后需要两步
def minMovesToCaptureTheQueen(a, b, c, d, e, f):
"""
:type a: int
:type b: int
:type c: int
:type d: int
:type e: int
:type f: int
:rtype: int
"""
if abs(c-e)==abs(d-f):
if abs(a-c)==abs(b-d) and min(c,e)<a<max(c,e) and min(d,f)<b<max(d,f):
return 2
else:
return 1
if a==e:
if c==a and min(b,f)<d<max(b,f):
return 2
else:
return 1
if b==f:
if d==b and min(a,e)<c<max(a,e):
return 2
else:
return 1
return 2
12/6 999. 可以被一步捕获的棋子数
找到车的位置 向四个方向搜索是否第一个棋子为卒
def numRookCaptures(board):
"""
:type board: List[List[str]]
:rtype: int
"""
n=8
x0,y0=0,0
for i in range(n):
for j in range(n):
if board[i][j]=='R':
x0=i
y0=j
break
ans = 0
steps=[(1,0),(0,1),(-1,0),(0,-1)]
for dx,dy in steps:
x,y=x0+dx,y0+dy
while 0<=x<n and 0<=y<n:
if board[x][y]=='p':
ans+=1
break
if board[x][y]=='B':
break
x+=dx
y+=dy
return ans
12/7 688. 骑士在棋盘上的概率
dp[step][i][j]标记为从(i,j)出发走step步 仍在棋盘上的概率
如果step为0,(i,j)在棋盘上为1 不在棋盘上为0
每次有八种走法
def knightProbability(n, k, row, column):
"""
:type n: int
:type k: int
:type row: int
:type column: int
:rtype: float
"""
dp = [[[0]*n for _ in range(n)] for _ in range(k+1)]
for step in range(k+1):
for i in range(n):
for j in range(n):
if step==0:
dp[step][i][j]=1
else:
for mi,mj in [(-2, -1), (-2, 1), (2, -1), (2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2)]:
ni,nj = i+mi,j+mj
if 0<=ni<n and 0<=nj<n:
dp[step][i][j] += dp[step-1][ni][nj]*1.0/8
return dp[k][row][column]
12/8 782. 变为棋盘
第一步 判断可行性
若需要变为棋盘 每一行或者每一列中1和0的个数差不超过1
对于某两行 i,j 行变换不会影响两行的对应位置差值
列变换同样不会影响两行所有位置差值和
例如 i:00110
j:11000
对于这两行 i,j 无论行列怎么变换必定存在某一列为两个0
所以若要变为棋盘 行的状态必定只能存在两种
并且两行内每个位置值相反
列状态也相同
第二部 计算移动次数
对于行来说 进行列移动改变状态
因为只存在两种相反状态的行
所以只需要将一行移动成功 对应的左右行也移动成功
只需考虑第一行移动成功的次数
如果每一行个数n为偶数 则有两种情况 判断成为0101…或者1010…哪一种次数少
如果n为奇数 则起始位置只能为个数多的1或者0一种情况
列的情况与行相同且互不影响
将两种情况相加即可
binvalue用来将数组l内的数组合为一个二进制数
numone用来统计二进制数内1的个数
mask0,mask1分别代表0101…,1010…两种状态结果
def movesToChessboard(board):
"""
:type board: List[List[int]]
:rtype: int
"""
def binvalue(l):
v = 0
for i in l:
v = (v<<1)+i
return v
def numone(v):
ans = 0
while v>0:
if v&1==1:
ans+=1
v>>=1
return ans
n= len(board)
row = sum(board[0])
col = sum([board[i][0] for i in range(n)])
if abs(2*row-n)>1 or abs(2*col-n)>1:
return -1
rowv = binvalue(board[0])
colv = binvalue([board[i][0] for i in range(n)])
for i in range(1,n):
tmpr = binvalue(board[i])
if tmpr!=rowv and tmpr^rowv!=2**n-1:
return -1
tmpc = binvalue([board[j][i] for j in range(n)])
if tmpc!=colv and tmpc^colv!=2**n-1:
return -1
mask0,mask1 = 0,0
for i in range(n):
mask0 = (mask0<<1)+(i%2)
mask1 = (mask1<<1)+((i+1)%2)
total = 0
if n%2==0:
total += min(numone(rowv^mask0),numone(rowv^mask1))
total += min(numone(colv^mask0),numone(colv^mask1))
else:
if row*2>n:
total += numone(rowv^mask1)
else:
total += numone(rowv^mask0)
if col*2>n:
total += numone(colv^mask1)
else:
total += numone(colv^mask0)
return total//2