参考以下一片写的很详细的文章:
https://blog.csdn.net/sinat_17196995/article/details/71124284
其中把旧代码在python3中报错的都改过来了!良心~~
(比如报错has_key(), map对象无len())
以下的链接是图解整个过程,个人觉得清晰明了:
https://www.cnblogs.com/bigmonkey/p/7405555.html
Apriori算法不适用于非重复项集数元素较多的案例,建议分析的商品种类10左右。
输入:
dataset的类型应该是list形式:
dataSet=[[1, 2,3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
dataSet=[['豆奶','莴苣'],
['莴苣','尿布','葡萄酒','甜菜'],
['豆奶','尿布','葡萄酒','橙汁'],
['莴苣','豆奶','尿布','葡萄酒'],
['莴苣','豆奶','尿布','橙汁']]
装入黑盒:
L,suppData=apriori(dataSet,0.5)
rules=generateRules(L,suppData,0.7)
输出:
L:频繁项集
suppData:支持度
rules:规则的置信度
以下是“黑盒”
Apriori.py:
def createC1(dataSet):
C1 = []